Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/4/10.1063/1.4916973
1.
1.J. W. Han, J. S. Oh, and M. Meyyappan, Appl. Phys. Lett. 100, 213505 (2012).
http://dx.doi.org/10.1063/1.4717751
2.
2.I. Brodie, E. R. Westerberg, D. R. Cone, J. J. Muray, N. Williams, and L. Gasiorek, IEEE Trans. Electron Devices ED 28, 1422 (1981).
http://dx.doi.org/10.1109/T-ED.1981.20625
3.
3.S. Srisonphan, Y. S. Jung, and H. K. Kim, Nature Nanotechnol. 7, 504 (2012).
http://dx.doi.org/10.1038/nnano.2012.107
4.
4.T. S. Fahlen, “Performance advantages and fabrication of small gate openings in Candescent’s thin CRT,'' in Proc. 12th Int’l Vacuum Microelectronics Conf., Darmstadt, Germany (1999) p. 56.
5.
5.A. F. Bernhardt, R. J. Contolini, A. F. Jankowski, V. Liberman, J. D. Morse, and R. G. Musket, J. Vac. Sci. Technol. B 18, 1212 (2000).
http://dx.doi.org/10.1116/1.591363
6.
6.X. Chen, S. H. Zaidi, D. J. Devine, and S. R. J. Brueck, J. Vac. Sci. Technol. B 14, 3339 (1996).
http://dx.doi.org/10.1116/1.588533
7.
7.D. G. Pflug, M. Schattenburg, A. I. Akinwande, and H. I. Smith, “100nm Gate aperture field emitter arrays,'' in Proc. 11th Int’l Vacuum Microelectronics Conf., Asheville, NC (1998) p. 130.
8.
8.J. O. Choi, A. I. Akinwande, and H. I. Smith, “100nm gate hole openings for low voltage driving field emission display applications,'' in Proc. 13th Int’l Vacuum Microelectronics Conf., Guangzhou, P. R. China (2000) p. 61.
9.
9.U. C. Fischer and H. P. Zingsheim, J. Vac. Sci. Technol. 19, 881 (1981).
http://dx.doi.org/10.1116/1.571227
10.
10.H. W. Deckman and J. H. Dunsmuir, Appl. Phys. Lett. 41, 377 (1982).
http://dx.doi.org/10.1063/1.93501
11.
11.J. C. Hulteen and R. P. V. Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995).
http://dx.doi.org/10.1116/1.579726
12.
12.C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001).
http://dx.doi.org/10.1021/jp010657m
13.
13.C. Haginoya, M. Ishibashi, and K. Koike, Appl. Phys. Lett. 71, 2934 (1997).
http://dx.doi.org/10.1063/1.120220
14.
14.W. A. Murray, S. Astilean, and W. L. Barnes, Phys. Rev. B. 69, 1654071 (2004).
15.
15.B. J. Y. Tan, C. H. Sow, T. S. Koh, K. C. Chin, A. T. S. Wee, and C. K. Ong, J. Phys. Chem. B 109, 11100 (2005).
http://dx.doi.org/10.1021/jp045172n
16.
16.J. Zhu, X. Zhu, R. Hoekstra, L. Li, F. Xiu, M. Xue, B. Zeng, and K. L. Wang, Appl. Phys. Lett. 100, 143109 (2012).
http://dx.doi.org/10.1063/1.3701582
17.
17.A. J. Morfa, E. M. Akinoglu, J. Subbiah, M. Giersig, and P. Mulvaney, J. Appl. Phys. 114, 054502 (2013).
http://dx.doi.org/10.1063/1.4816790
18.
18.C. W. Kuo, J. Y. Shiu, Y. H. Cho, and P. Chen, Adv. Mater. 15, 1065 (2003).
http://dx.doi.org/10.1002/adma.200304824
19.
19.C. W. Kuo, J. Y. Shiu, P. L. Chen, and G. A. Somorjai, J. Phys. Chem. B 107, 9950 (2003).
http://dx.doi.org/10.1021/jp035468d
20.
20.Y. J. Zhang, W. Li, and K. J. Chen, Journal of Alloys and Compounds 450, 512 (2008).
http://dx.doi.org/10.1016/j.jallcom.2006.11.184
21.
21.X. Y. Wang, H. Zhong, J. H. Yuan, D. Sheng, X. Ma, J. J. Xu, and H. Y. Chen, Chem. Lett. 33, 982 (2004).
http://dx.doi.org/10.1246/cl.2004.982
22.
22.S. M. Weekes, F. Y. Ogrin, and W. A. Murray, Langmuir 20, 11208 (2004).
http://dx.doi.org/10.1021/la048695v
23.
23.S. M. Weekes and F. Y. Ogrin, J. Appl. Phys. 97, 10J503/1 (2005).
http://dx.doi.org/10.1063/1.1849665
24.
24.Y. D. Wang, S. J. Chua, S. Tripathy, M. S. Sander, P. Chen, and C. G. Fonstad, Appl. Phys. Lett. 33, 982 (2004).
25.
25.S. M. Weekes, F. Y. Ogrin, W. A. Murray, and P. S. Keatley, Langmuir 23, 1057 (2007).
http://dx.doi.org/10.1021/la061396g
26.
26.M. Shishido and D. Kitagawa, Colloids and Surfaces A 311, 32 (2007).
27.
27.N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayma, Langmuir 8, 3181 (1992).
http://dx.doi.org/10.1021/la00048a054
28.
28.Q. B. Meng, G. H. Fu, Y. Einaga, Z. Z. Gu, A. Fujishima, and O. Sato, Chemistry of Materials 14, 760 (2002).
http://dx.doi.org/10.1021/cm0101576
29.
29.A. D. Dinsmore, J. C. Crocker, and A. G. Yodh, Current Opinion in Colloid & Interface Science 3, 5 (1998).
http://dx.doi.org/10.1016/S1359-0294(98)80035-6
30.
30.A. Mihi, M. Ocana, and H. Miguez, Advanced Materials 18, 2244 (2006).
http://dx.doi.org/10.1002/adma.200600555
31.
31.P. Jiang, T. Prasad, M. J. McFarland, and V. L. Colvin, Appl. Phys. Lett. 89, 011908 (2006).
http://dx.doi.org/10.1063/1.2218832
32.
32.J. Rybczynski, U. Ebels, and M. Giersig, Colloids and Surfaces A 219, 1 (2003).
http://dx.doi.org/10.1016/S0927-7757(03)00011-6
33.
33.F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, Langmuir 13, 2983 (1997).
http://dx.doi.org/10.1021/la9621123
34.
34.M. Tormen, L. Businaro, M. Altissimo, F. Romanato, S. Cabrini, F. Perennes, R. Proietti, H.-B. Sun, S. Kawata, and E. Di Fabrizio, Microelectron. Eng. 73, 535 (2004).
http://dx.doi.org/10.1016/S0167-9317(04)00134-0
35.
35.Y. C. Chao, K. R. Wang, H. F. Meng, H. W. Zan, and Y. H. Hsu, Organic Electronics 13, 3177 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.09.013
36.
36.Y. H. Jhang, Y. T. Tsai, C. H. Tsai, S. Y. Hsu, T. W. Huang, C. Y. Lu, M. C. Chen, Y. F. Chen, and C. C. Wu, Organic Electronics 13, 1865 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.05.048
37.
37.F. M. Charbonnier, J. P. Barbour, L. F. Garrett, and W. P. Dyke, Proc. IEEE 51, 991 (1963).
http://dx.doi.org/10.1109/PROC.1963.2379
38.
38.C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, J. Appl. Phys. 47, 5248 (1976).
http://dx.doi.org/10.1063/1.322600
39.
39.M. Garven, S. N. Spark, A. W. Cross, S. J. Cooke, and A. D. R. Phelps, Phys. Rev. Lett. 77, 2320 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.2320
40.
40.S. G. Bandy, M. C. Green, C. A. Spindt, M. A. Hollis, W. D. Palmer, B. Goplen, and E. G. Wintucky, inProc. IEEE Int. Vac. Microelectron. Conf., Ashville, NC (1998) pp. 132133.
41.
41.D. R. Whaley, B. Gannon, C. Smith, C. M. Armstrong, and C. A. Spindt, IEEE Trans. Plasma Sci. 28, 727 (2000).
http://dx.doi.org/10.1109/27.887712
42.
42.H. Makishima, H. Imura, M. Takahashi, H. Fukui, and A. Okamoto, inProc. IEEE Int. Vac. Microelectron. Conf., Kyongju, Korea (1997) pp. 194199.
43.
43.H. Makishima, S. Miyano, H. Imura, J. Matsuoka, H. Takemura, and A. Okamoto, Appl. Surf. Sci. 146, 230 (1999).
http://dx.doi.org/10.1016/S0169-4332(99)00061-6
44.
44.D. R. Whaley, B. Gannon, V. O. Heinen, K. E. Kreischer, C. E. Holland, and C. A. Spindt, IEEE Trans. Plasma Sci. 30, 998 (2002).
http://dx.doi.org/10.1109/TPS.2002.801527
45.
45.C. Arcos, K. Kumar, W. González-Viñas, R. Sirera, K. M. Poduska, and A. Yethiraj, Physical Review E 77, 050402 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.050402
46.
46.C. R. Musil, D. Jeggle, H. W. Lehmann, L. Scandella, J. Gobrecht, and M. Dobeli, J. Vac. Sci. Technol. B 13, 2781 (1995).
http://dx.doi.org/10.1116/1.588265
47.
47.C. Haginoya, M. Ishibashi, and K. Koike, Appl. Phys. Lett. 71, 2934 (1997).
http://dx.doi.org/10.1063/1.120220
48.
48.N. R. M. Juremi, U. Mustafa, M. A. Agam, and H. Nur, AIP Conf. Proc. 1314, 296 (2011).
http://dx.doi.org/10.1063/1.3587005
49.
49.J. F. Zhu, X. D. Zhu, R. Hoekstra, L. Li, F. X. Xiu, and M. Xue, Appl. Phys. Lett. 100, 143109 (2012).
http://dx.doi.org/10.1063/1.3701582
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/4/10.1063/1.4916973
Loading
/content/aip/journal/adva/5/4/10.1063/1.4916973
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/4/10.1063/1.4916973
2015-04-01
2016-09-30

Abstract

Development of vacuum micro-nano-electronics is quite important for combining the advantages of vacuum tubes and solid-state devices but limited by the prevailing fabricating techniques which are expensive, time consuming and low-throughput. In this work, window-assisted nanosphere lithography (NSL) technique was proposed and enabled the low-cost and high-efficiency fabrication of nanostructures for vacuum micro-nano-electronic devices, thus allowing potential applications in many areas. As a demonstration, we fabricated high-density field emitter arrays which can be used as cold cathodes in vacuum micro-nano-electronic devices by using the window-assisted NSL technique. The details of the fabricating process have been investigated. This work provided a new and feasible idea for fabricating nanostructure arrays for vacuum micro-nano-electronic devices, which would spawn the development of vacuum micro-nano-electronics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/4/1.4916973.html;jsessionid=s7wlNNIrWV3V3hkvYJGanUEy.x-aip-live-02?itemId=/content/aip/journal/adva/5/4/10.1063/1.4916973&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/4/10.1063/1.4916973&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/4/10.1063/1.4916973'
Right1,Right2,Right3,