Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. W. Han, J. S. Oh, and M. Meyyappan, Appl. Phys. Lett. 100, 213505 (2012).
2.I. Brodie, E. R. Westerberg, D. R. Cone, J. J. Muray, N. Williams, and L. Gasiorek, IEEE Trans. Electron Devices ED 28, 1422 (1981).
3.S. Srisonphan, Y. S. Jung, and H. K. Kim, Nature Nanotechnol. 7, 504 (2012).
4.T. S. Fahlen, “Performance advantages and fabrication of small gate openings in Candescent’s thin CRT,'' in Proc. 12th Int’l Vacuum Microelectronics Conf., Darmstadt, Germany (1999) p. 56.
5.A. F. Bernhardt, R. J. Contolini, A. F. Jankowski, V. Liberman, J. D. Morse, and R. G. Musket, J. Vac. Sci. Technol. B 18, 1212 (2000).
6.X. Chen, S. H. Zaidi, D. J. Devine, and S. R. J. Brueck, J. Vac. Sci. Technol. B 14, 3339 (1996).
7.D. G. Pflug, M. Schattenburg, A. I. Akinwande, and H. I. Smith, “100nm Gate aperture field emitter arrays,'' in Proc. 11th Int’l Vacuum Microelectronics Conf., Asheville, NC (1998) p. 130.
8.J. O. Choi, A. I. Akinwande, and H. I. Smith, “100nm gate hole openings for low voltage driving field emission display applications,'' in Proc. 13th Int’l Vacuum Microelectronics Conf., Guangzhou, P. R. China (2000) p. 61.
9.U. C. Fischer and H. P. Zingsheim, J. Vac. Sci. Technol. 19, 881 (1981).
10.H. W. Deckman and J. H. Dunsmuir, Appl. Phys. Lett. 41, 377 (1982).
11.J. C. Hulteen and R. P. V. Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995).
12.C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001).
13.C. Haginoya, M. Ishibashi, and K. Koike, Appl. Phys. Lett. 71, 2934 (1997).
14.W. A. Murray, S. Astilean, and W. L. Barnes, Phys. Rev. B. 69, 1654071 (2004).
15.B. J. Y. Tan, C. H. Sow, T. S. Koh, K. C. Chin, A. T. S. Wee, and C. K. Ong, J. Phys. Chem. B 109, 11100 (2005).
16.J. Zhu, X. Zhu, R. Hoekstra, L. Li, F. Xiu, M. Xue, B. Zeng, and K. L. Wang, Appl. Phys. Lett. 100, 143109 (2012).
17.A. J. Morfa, E. M. Akinoglu, J. Subbiah, M. Giersig, and P. Mulvaney, J. Appl. Phys. 114, 054502 (2013).
18.C. W. Kuo, J. Y. Shiu, Y. H. Cho, and P. Chen, Adv. Mater. 15, 1065 (2003).
19.C. W. Kuo, J. Y. Shiu, P. L. Chen, and G. A. Somorjai, J. Phys. Chem. B 107, 9950 (2003).
20.Y. J. Zhang, W. Li, and K. J. Chen, Journal of Alloys and Compounds 450, 512 (2008).
21.X. Y. Wang, H. Zhong, J. H. Yuan, D. Sheng, X. Ma, J. J. Xu, and H. Y. Chen, Chem. Lett. 33, 982 (2004).
22.S. M. Weekes, F. Y. Ogrin, and W. A. Murray, Langmuir 20, 11208 (2004).
23.S. M. Weekes and F. Y. Ogrin, J. Appl. Phys. 97, 10J503/1 (2005).
24.Y. D. Wang, S. J. Chua, S. Tripathy, M. S. Sander, P. Chen, and C. G. Fonstad, Appl. Phys. Lett. 33, 982 (2004).
25.S. M. Weekes, F. Y. Ogrin, W. A. Murray, and P. S. Keatley, Langmuir 23, 1057 (2007).
26.M. Shishido and D. Kitagawa, Colloids and Surfaces A 311, 32 (2007).
27.N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayma, Langmuir 8, 3181 (1992).
28.Q. B. Meng, G. H. Fu, Y. Einaga, Z. Z. Gu, A. Fujishima, and O. Sato, Chemistry of Materials 14, 760 (2002).
29.A. D. Dinsmore, J. C. Crocker, and A. G. Yodh, Current Opinion in Colloid & Interface Science 3, 5 (1998).
30.A. Mihi, M. Ocana, and H. Miguez, Advanced Materials 18, 2244 (2006).
31.P. Jiang, T. Prasad, M. J. McFarland, and V. L. Colvin, Appl. Phys. Lett. 89, 011908 (2006).
32.J. Rybczynski, U. Ebels, and M. Giersig, Colloids and Surfaces A 219, 1 (2003).
33.F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, Langmuir 13, 2983 (1997).
34.M. Tormen, L. Businaro, M. Altissimo, F. Romanato, S. Cabrini, F. Perennes, R. Proietti, H.-B. Sun, S. Kawata, and E. Di Fabrizio, Microelectron. Eng. 73, 535 (2004).
35.Y. C. Chao, K. R. Wang, H. F. Meng, H. W. Zan, and Y. H. Hsu, Organic Electronics 13, 3177 (2012).
36.Y. H. Jhang, Y. T. Tsai, C. H. Tsai, S. Y. Hsu, T. W. Huang, C. Y. Lu, M. C. Chen, Y. F. Chen, and C. C. Wu, Organic Electronics 13, 1865 (2012).
37.F. M. Charbonnier, J. P. Barbour, L. F. Garrett, and W. P. Dyke, Proc. IEEE 51, 991 (1963).
38.C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, J. Appl. Phys. 47, 5248 (1976).
39.M. Garven, S. N. Spark, A. W. Cross, S. J. Cooke, and A. D. R. Phelps, Phys. Rev. Lett. 77, 2320 (1996).
40.S. G. Bandy, M. C. Green, C. A. Spindt, M. A. Hollis, W. D. Palmer, B. Goplen, and E. G. Wintucky, inProc. IEEE Int. Vac. Microelectron. Conf., Ashville, NC (1998) pp. 132133.
41.D. R. Whaley, B. Gannon, C. Smith, C. M. Armstrong, and C. A. Spindt, IEEE Trans. Plasma Sci. 28, 727 (2000).
42.H. Makishima, H. Imura, M. Takahashi, H. Fukui, and A. Okamoto, inProc. IEEE Int. Vac. Microelectron. Conf., Kyongju, Korea (1997) pp. 194199.
43.H. Makishima, S. Miyano, H. Imura, J. Matsuoka, H. Takemura, and A. Okamoto, Appl. Surf. Sci. 146, 230 (1999).
44.D. R. Whaley, B. Gannon, V. O. Heinen, K. E. Kreischer, C. E. Holland, and C. A. Spindt, IEEE Trans. Plasma Sci. 30, 998 (2002).
45.C. Arcos, K. Kumar, W. González-Viñas, R. Sirera, K. M. Poduska, and A. Yethiraj, Physical Review E 77, 050402 (2008).
46.C. R. Musil, D. Jeggle, H. W. Lehmann, L. Scandella, J. Gobrecht, and M. Dobeli, J. Vac. Sci. Technol. B 13, 2781 (1995).
47.C. Haginoya, M. Ishibashi, and K. Koike, Appl. Phys. Lett. 71, 2934 (1997).
48.N. R. M. Juremi, U. Mustafa, M. A. Agam, and H. Nur, AIP Conf. Proc. 1314, 296 (2011).
49.J. F. Zhu, X. D. Zhu, R. Hoekstra, L. Li, F. X. Xiu, and M. Xue, Appl. Phys. Lett. 100, 143109 (2012).

Data & Media loading...


Article metrics loading...



Development of vacuum micro-nano-electronics is quite important for combining the advantages of vacuum tubes and solid-state devices but limited by the prevailing fabricating techniques which are expensive, time consuming and low-throughput. In this work, window-assisted nanosphere lithography (NSL) technique was proposed and enabled the low-cost and high-efficiency fabrication of nanostructures for vacuum micro-nano-electronic devices, thus allowing potential applications in many areas. As a demonstration, we fabricated high-density field emitter arrays which can be used as cold cathodes in vacuum micro-nano-electronic devices by using the window-assisted NSL technique. The details of the fabricating process have been investigated. This work provided a new and feasible idea for fabricating nanostructure arrays for vacuum micro-nano-electronic devices, which would spawn the development of vacuum micro-nano-electronics.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd