Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/4/10.1063/1.4917455
1.
1.M. Hasan and C. Kane, Rev. Mod. Phys. 82, 3045 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.3045
2.
2.Y. Ando, J. Phys. Soc. Japan 82, 102001 (2013).
http://dx.doi.org/10.7566/JPSJ.82.102001
3.
3.J.E. Moore, Nature 464, 194 (2010).
http://dx.doi.org/10.1038/nature08916
4.
4.C. Wu, B.A. Bernevig, and S. Zhang, Phys. Rev. Lett. 96, 1 (2006).
5.
5.C.L. Kane and E.J. Mele, Phys. Rev. Lett. 95, 1 (2005).
6.
6.L. Fu, C.L. Kane, and E.J. Mele, Phys. Rev. Lett. 98, 1 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.106803
7.
7.B.A. Bernevig, T.L. Hughes, and S. Zhang, Science 314, 1757 (2006).
http://dx.doi.org/10.1126/science.1133734
8.
8.H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nat. Phys. 5, 438 (2009).
http://dx.doi.org/10.1038/nphys1270
9.
9.D. Hsieh, D. Qian, L. Wray, Y. Xia, Y.S. Hor, R.J. Cava, and M.Z. Hasan, Nature 452, 970 (2008).
http://dx.doi.org/10.1038/nature06843
10.
10.M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L.X.-L. Qi, S.-C.S.-C. Zhang, M. König, C. Brüne, K. Markus, C. Br, M. Koenig, and C. Bruene, Science (80-.) 318, 766 (2007).
http://dx.doi.org/10.1126/science.1148047
11.
11.Y. Xia, D. Qian, D. Hsieh, L. Wray, a. Pal, H. Lin, a. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, and M.Z. Hasan, Nat. Phys. 5, 398 (2009).
http://dx.doi.org/10.1038/nphys1274
12.
12.Y.L. Chen, J.G. Analytis, J.-H. Chu, Z.K. Liu, S.-K. Mo, X.L. Qi, H.J. Zhang, D.H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R. Fisher, Z. Hussain, and Z.-X. Shen, Science 325, 178 (2009).
http://dx.doi.org/10.1126/science.1173034
13.
13.T. Zhang, P. Cheng, X. Chen, J. Jia, X. Ma, K. He, H. Zhang, X. Dai, Z. Fang, X. Xie, Q. Xue, and L. Wang, Phys. Rev. Lett. 103, 1 (2009).
14.
14.A.H. Castro Neto, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
15.
15.P. Cheng, C. Song, T. Zhang, Y. Zhang, Y. Wang, J.F. Jia, J. Wang, Y. Wang, B.F. Zhu, X. Chen, X. Ma, K. He, L. Wang, X. Dai, Z. Fang, X. Xie, X.L. Qi, C.X. Liu, S.C. Zhang, and Q.K. Xue, Phys. Rev. Lett. 105 (2010).
16.
16.D.-X. Qu, Y.S. Hor, J. Xiong, R.J. Cava, and N.P. Ong, Science 329, 821 (2010).
http://dx.doi.org/10.1126/science.1189792
17.
17.H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, and X. Qi, Nat. Mater. 9, 225 (2009).
18.
18.L. Fu and C. Kane, Phys. Rev. Lett. 100, 1 (2008).
19.
19.X.-L. Qi, S. Zhang, A. Bernevig, S. Ryu, C. Yan, and J. Teo, Phys. Today 63, 55 (2010).
http://dx.doi.org/10.1063/1.3293411
20.
20.G. Bergmann, Phys. Rep. 1 (1913).
21.
21.J. Chen, H. Qin, F. Yang, J. Liu, T. Guan, F. Qu, G. Zhang, J. Shi, X. Xie, C. Yang, K. Wu, Y. Li, and L. Lu, Phys. Rev. Lett. 105, 1 (2010).
22.
22.J.J. Cha, D. Kong, S.-S. Hong, J.G. Analytis, K. Lai, and Y. Cui, Nano Lett. 12, 1107 (2012).
http://dx.doi.org/10.1021/nl300018j
23.
23.L. Bao, L. He, N. Meyer, X. Kou, P. Zhang, Z.-G. Chen, A.V Fedorov, J. Zou, T.M. Riedemann, T.A. Lograsso, K.L. Wang, G. Tuttle, and F. Xiu, Sci. Rep. 2, 726 (2012).
http://dx.doi.org/10.1038/srep00726
24.
24.D. Hsieh, Y. Xia, D. Qian, L. Wray, J.H. Dil, F. Meier, J. Osterwalder, L. Patthey, J.G. Checkelsky, N.P. Ong, a V Fedorov, H. Lin, a Bansil, D. Grauer, Y.S. Hor, R.J. Cava, and M.Z. Hasan, Nature 460, 1101 (2009).
http://dx.doi.org/10.1038/nature08234
25.
25.D.O. Scanlon, P.D.C. King, R.P. Singh, A. de la Torre, S.M. Walker, G. Balakrishnan, F. Baumberger, and C.R.A. Catlow, Adv. Mater. 24, 2154 (2012).
http://dx.doi.org/10.1002/adma.201200187
26.
26.L.-L. Wang and D.D. Johnson, Phys. Rev. B 83, 241309 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.241309
27.
27.M. Neupane, S.-Y. Xu, L.A. Wray, A. Petersen, R. Shankar, N. Alidoust, C. Liu, A. Fedorov, H. Ji, J.M. Allred, Y.S. Hor, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, R.J. Cava, and M.Z. Hasan, Phys. Rev. B 85, 235406 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.235406
28.
28.Z. Ren, A.A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. B 82, 1 (2010).
29.
29.A.A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. Lett. 109, 066803 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.066803
30.
30.H. Steinberg, J.-B. Laloë, V. Fatemi, J.S. Moodera, and P. Jarillo-Herrero, Phys. Rev. B 84, 5 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.233101
31.
31.C. Mitra, P. Raychaudhuri, J. John, S.K. Dhar, A.K. Nigam, and R. Pinto, J. Appl. Phys. 89, 524 (2001).
http://dx.doi.org/10.1063/1.1331648
32.
32.S.X. Zhang, L. Yan, J. Qi, M. Zhuo, Y.-Q. Wang, R.P. Prasankumar, Q.X. Jia, and S.T. Picraux, Thin Solid Films 520, 6459 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.07.012
33.
33.S. Nakajima, J. Phys. Chem. Solids 24, 479 (1963).
http://dx.doi.org/10.1016/0022-3697(63)90207-5
34.
34.W. Richter and C.R. Becker, Phys. Status Solidi 84, 619 (1977).
http://dx.doi.org/10.1002/pssb.2220840226
35.
35.M. Liu, C.-Z. Chang, Z. Zhang, Y. Zhang, W. Ruan, K. He, L. Wang, X. Chen, J.-F. Jia, S.-C. Zhang, Q.-K. Xue, X. Ma, and Y. Wang, Phys. Rev. B 83, 165440 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.165440
36.
36.P.D.C. King, R.C. Hatch, M. Bianchi, R. Ovsyannikov, C. Lupulescu, G. Landolt, B. Slomski, J.H. Dil, D. Guan, J.L. Mi, E.D.L. Rienks, J. Fink, A. Lindblad, S. Svensson, S. Bao, G. Balakrishnan, B.B. Iversen, J. Osterwalder, W. Eberhardt, F. Baumberger, and P. Hofmann, Phys. Rev. Lett. 107, 096802 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.096802
37.
37.N. Bansal, Y.S. Kim, M. Brahlek, E. Edrey, and S. Oh, Phys. Rev. Lett. 109, 116804 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.116804
38.
38.M. Bianchi, D. Guan, S. Bao, J. Mi, B.B. Iversen, P.D.C. King, and P. Hofmann, Nat. Commun. 1, 128 (2010).
http://dx.doi.org/10.1038/ncomms1131
39.
39.A.A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Adv. Mater. 24, 5581 (2012).
http://dx.doi.org/10.1002/adma.201201827
40.
40.Y. Onose, R. Yoshimi, A. Tsukazaki, H. Yuan, T. Hidaka, Y. Iwasa, M. Kawasaki, and Y. Tokura, Appl. Phys. Express 4, 083001 (2011).
http://dx.doi.org/10.1143/APEX.4.083001
41.
41.H.-Z. Lu and S.-Q. Shen, Phys. Rev. B 84, 125138 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.125138
42.
42.P. Gehring, B. Gao, M. Burghard, and K. Kern, Appl. Phys. Lett. 101, 023116 (2012).
http://dx.doi.org/10.1063/1.4736404
43.
43.D. Spirito, L. Di Gaspare, F. Evangelisti, A. Di Gaspare, E. Giovine, and A. Notargiacomo, Phys. Rev. B 85, 235314 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.235314
44.
44.B.A. Assaf, T. Cardinal, P. Wei, F. Katmis, J.S. Moodera, and D. Heiman, Appl. Phys. Lett. 102, 012102 (2013).
http://dx.doi.org/10.1063/1.4773207
45.
45.S. Hikami, A.I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).
http://dx.doi.org/10.1143/PTP.63.707
46.
46.M. Liu, J. Zhang, C.-Z. Chang, Z. Zhang, X. Feng, K. Li, K. He, L. Wang, X. Chen, X. Dai, Z. Fang, Q.-K. Xue, X. Ma, and Y. Wang, Phys. Rev. Lett. 108, 1 (2012).
47.
47.H. Tang, D. Liang, R.L.J. Qiu, and X.P.A. Gao, ACS Nano 5(9) (2011).
48.
48.See supplementary material at http://dx.doi.org/10.1063/1.4917455 for a comparative study of mobility and carrier density (electron concentration) for different topological insulator thin films.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/4/10.1063/1.4917455
Loading
/content/aip/journal/adva/5/4/10.1063/1.4917455
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/4/10.1063/1.4917455
2015-04-08
2016-09-26

Abstract

We explore the phase coherence of thin films of the topological insulator material BiSeTe grown through pulsed laser deposition (PLD) technique. The films were characterised using various techniques for phase and composition. The films were found to be of good quality. We carried out extensive magneto-transport studies of these films and found that they exhibit two dimensional weak antilocalization behaviour. A careful analysis revealed a relatively high phase coherence length (58nm at 1.78K) for a PLD grown film. Since PLD is an inexpensive technique, with the possibility to integrate with other materials, one can make devices which can be extremely useful for low power spintronics and topological quantum computation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/4/1.4917455.html;jsessionid=AcVKPm7YVCEwOE9mbkNFDOfn.x-aip-live-06?itemId=/content/aip/journal/adva/5/4/10.1063/1.4917455&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/4/10.1063/1.4917455&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/4/10.1063/1.4917455'
Right1,Right2,Right3,