Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.M. Hasan and C. Kane, Rev. Mod. Phys. 82, 3045 (2010).
2.Y. Ando, J. Phys. Soc. Japan 82, 102001 (2013).
3.J.E. Moore, Nature 464, 194 (2010).
4.C. Wu, B.A. Bernevig, and S. Zhang, Phys. Rev. Lett. 96, 1 (2006).
5.C.L. Kane and E.J. Mele, Phys. Rev. Lett. 95, 1 (2005).
6.L. Fu, C.L. Kane, and E.J. Mele, Phys. Rev. Lett. 98, 1 (2007).
7.B.A. Bernevig, T.L. Hughes, and S. Zhang, Science 314, 1757 (2006).
8.H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nat. Phys. 5, 438 (2009).
9.D. Hsieh, D. Qian, L. Wray, Y. Xia, Y.S. Hor, R.J. Cava, and M.Z. Hasan, Nature 452, 970 (2008).
10.M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L.X.-L. Qi, S.-C.S.-C. Zhang, M. König, C. Brüne, K. Markus, C. Br, M. Koenig, and C. Bruene, Science (80-.) 318, 766 (2007).
11.Y. Xia, D. Qian, D. Hsieh, L. Wray, a. Pal, H. Lin, a. Bansil, D. Grauer, Y.S. Hor, R.J. Cava, and M.Z. Hasan, Nat. Phys. 5, 398 (2009).
12.Y.L. Chen, J.G. Analytis, J.-H. Chu, Z.K. Liu, S.-K. Mo, X.L. Qi, H.J. Zhang, D.H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R. Fisher, Z. Hussain, and Z.-X. Shen, Science 325, 178 (2009).
13.T. Zhang, P. Cheng, X. Chen, J. Jia, X. Ma, K. He, H. Zhang, X. Dai, Z. Fang, X. Xie, Q. Xue, and L. Wang, Phys. Rev. Lett. 103, 1 (2009).
14.A.H. Castro Neto, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).
15.P. Cheng, C. Song, T. Zhang, Y. Zhang, Y. Wang, J.F. Jia, J. Wang, Y. Wang, B.F. Zhu, X. Chen, X. Ma, K. He, L. Wang, X. Dai, Z. Fang, X. Xie, X.L. Qi, C.X. Liu, S.C. Zhang, and Q.K. Xue, Phys. Rev. Lett. 105 (2010).
16.D.-X. Qu, Y.S. Hor, J. Xiong, R.J. Cava, and N.P. Ong, Science 329, 821 (2010).
17.H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, and X. Qi, Nat. Mater. 9, 225 (2009).
18.L. Fu and C. Kane, Phys. Rev. Lett. 100, 1 (2008).
19.X.-L. Qi, S. Zhang, A. Bernevig, S. Ryu, C. Yan, and J. Teo, Phys. Today 63, 55 (2010).
20.G. Bergmann, Phys. Rep. 1 (1913).
21.J. Chen, H. Qin, F. Yang, J. Liu, T. Guan, F. Qu, G. Zhang, J. Shi, X. Xie, C. Yang, K. Wu, Y. Li, and L. Lu, Phys. Rev. Lett. 105, 1 (2010).
22.J.J. Cha, D. Kong, S.-S. Hong, J.G. Analytis, K. Lai, and Y. Cui, Nano Lett. 12, 1107 (2012).
23.L. Bao, L. He, N. Meyer, X. Kou, P. Zhang, Z.-G. Chen, A.V Fedorov, J. Zou, T.M. Riedemann, T.A. Lograsso, K.L. Wang, G. Tuttle, and F. Xiu, Sci. Rep. 2, 726 (2012).
24.D. Hsieh, Y. Xia, D. Qian, L. Wray, J.H. Dil, F. Meier, J. Osterwalder, L. Patthey, J.G. Checkelsky, N.P. Ong, a V Fedorov, H. Lin, a Bansil, D. Grauer, Y.S. Hor, R.J. Cava, and M.Z. Hasan, Nature 460, 1101 (2009).
25.D.O. Scanlon, P.D.C. King, R.P. Singh, A. de la Torre, S.M. Walker, G. Balakrishnan, F. Baumberger, and C.R.A. Catlow, Adv. Mater. 24, 2154 (2012).
26.L.-L. Wang and D.D. Johnson, Phys. Rev. B 83, 241309 (2011).
27.M. Neupane, S.-Y. Xu, L.A. Wray, A. Petersen, R. Shankar, N. Alidoust, C. Liu, A. Fedorov, H. Ji, J.M. Allred, Y.S. Hor, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, R.J. Cava, and M.Z. Hasan, Phys. Rev. B 85, 235406 (2012).
28.Z. Ren, A.A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. B 82, 1 (2010).
29.A.A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. Lett. 109, 066803 (2012).
30.H. Steinberg, J.-B. Laloë, V. Fatemi, J.S. Moodera, and P. Jarillo-Herrero, Phys. Rev. B 84, 5 (2011).
31.C. Mitra, P. Raychaudhuri, J. John, S.K. Dhar, A.K. Nigam, and R. Pinto, J. Appl. Phys. 89, 524 (2001).
32.S.X. Zhang, L. Yan, J. Qi, M. Zhuo, Y.-Q. Wang, R.P. Prasankumar, Q.X. Jia, and S.T. Picraux, Thin Solid Films 520, 6459 (2012).
33.S. Nakajima, J. Phys. Chem. Solids 24, 479 (1963).
34.W. Richter and C.R. Becker, Phys. Status Solidi 84, 619 (1977).
35.M. Liu, C.-Z. Chang, Z. Zhang, Y. Zhang, W. Ruan, K. He, L. Wang, X. Chen, J.-F. Jia, S.-C. Zhang, Q.-K. Xue, X. Ma, and Y. Wang, Phys. Rev. B 83, 165440 (2011).
36.P.D.C. King, R.C. Hatch, M. Bianchi, R. Ovsyannikov, C. Lupulescu, G. Landolt, B. Slomski, J.H. Dil, D. Guan, J.L. Mi, E.D.L. Rienks, J. Fink, A. Lindblad, S. Svensson, S. Bao, G. Balakrishnan, B.B. Iversen, J. Osterwalder, W. Eberhardt, F. Baumberger, and P. Hofmann, Phys. Rev. Lett. 107, 096802 (2011).
37.N. Bansal, Y.S. Kim, M. Brahlek, E. Edrey, and S. Oh, Phys. Rev. Lett. 109, 116804 (2012).
38.M. Bianchi, D. Guan, S. Bao, J. Mi, B.B. Iversen, P.D.C. King, and P. Hofmann, Nat. Commun. 1, 128 (2010).
39.A.A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Adv. Mater. 24, 5581 (2012).
40.Y. Onose, R. Yoshimi, A. Tsukazaki, H. Yuan, T. Hidaka, Y. Iwasa, M. Kawasaki, and Y. Tokura, Appl. Phys. Express 4, 083001 (2011).
41.H.-Z. Lu and S.-Q. Shen, Phys. Rev. B 84, 125138 (2011).
42.P. Gehring, B. Gao, M. Burghard, and K. Kern, Appl. Phys. Lett. 101, 023116 (2012).
43.D. Spirito, L. Di Gaspare, F. Evangelisti, A. Di Gaspare, E. Giovine, and A. Notargiacomo, Phys. Rev. B 85, 235314 (2012).
44.B.A. Assaf, T. Cardinal, P. Wei, F. Katmis, J.S. Moodera, and D. Heiman, Appl. Phys. Lett. 102, 012102 (2013).
45.S. Hikami, A.I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).
46.M. Liu, J. Zhang, C.-Z. Chang, Z. Zhang, X. Feng, K. Li, K. He, L. Wang, X. Chen, X. Dai, Z. Fang, Q.-K. Xue, X. Ma, and Y. Wang, Phys. Rev. Lett. 108, 1 (2012).
47.H. Tang, D. Liang, R.L.J. Qiu, and X.P.A. Gao, ACS Nano 5(9) (2011).
48.See supplementary material at for a comparative study of mobility and carrier density (electron concentration) for different topological insulator thin films.[Supplementary Material]

Data & Media loading...


Article metrics loading...



We explore the phase coherence of thin films of the topological insulator material BiSeTe grown through pulsed laser deposition (PLD) technique. The films were characterised using various techniques for phase and composition. The films were found to be of good quality. We carried out extensive magneto-transport studies of these films and found that they exhibit two dimensional weak antilocalization behaviour. A careful analysis revealed a relatively high phase coherence length (58nm at 1.78K) for a PLD grown film. Since PLD is an inexpensive technique, with the possibility to integrate with other materials, one can make devices which can be extremely useful for low power spintronics and topological quantum computation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd