Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/4/10.1063/1.4917456
1.
1.M. J. M. de Jong and C. W. J. Beenakker, Phys. Rev. Lett. 74, 1657 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.1657
2.
2.S. Kashiwaya, Y. Tanaka, N. Yoshida, and M. R. Bealsy, Phys. Rev. B 60, 3572 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.3572
3.
3.I. Zutic, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.323
4.
4.F. S. Bergeret, A. F. Volkov, and K. B Efetov, Rev. Mod. Phys. 77, 1321 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.1321
5.
5.A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.935
6.
6.I. Zutic and O. T. Vallas, Phys. Rev. B 61, 1555 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.1555
7.
7.G. Annunziata, M. Cuoco, P. Gentile, A. Romano, and C. Noce, Phys. Rev. B 83, 094507 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.094507
8.
8.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
9.
9.A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. G. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
10.
10.H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen, and A. F. Morporpurgo, Nature (London) 466, 56 (2007).
http://dx.doi.org/10.1038/nature05555
11.
11.C. W. J. Beenakker, Phys. Rev. Lett. 97, 067007 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.067007
12.
12.C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008).
http://dx.doi.org/10.1103/RevModPhys.80.1337
13.
13.P. Jarillo-Herrero, J. A. Van Dam, and L. P. Kouwenhoven, Nature (London) 439, 953 (2006).
http://dx.doi.org/10.1038/nature04550
14.
14.N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. V. Wees, Nature 448, 571 (2007).
http://dx.doi.org/10.1038/nature06037
15.
15.C. Jozsa, M. Popinciuc, N. Tombros, H. T. Jonkman, and B. J. Van Wees, Phys. Rev. Lett. 100, 236603 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.236603
16.
16.H. Haugen, D. Huertas-Hernando, and A. Brataas, Phys. Rev. B 77, 115406 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.115406
17.
17.M. Zareyan, H. Mohammadpour, and A. G. Moghaddam, Phys. Rev. B 78, 193406 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.193406
18.
18.Y. Hajati, A. Heidari, M. Z. Shoushtari, and G. Rashedi, J. Magn. Magn. Mater. 362, 36-41 (2014).
http://dx.doi.org/10.1016/j.jmmm.2014.03.018
19.
19.A. G. Moghaddam and M. Zareyan, Phys. Rev. B 78, 115413 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.115413
20.
20.Y. Hue and G. Guo, Phys. Rev. B 81, 045412 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.045412
21.
21.Y. Hajati, M. Z. Shoushtari, and G. Rashedi, J. Appl. Phys. 111, 123908 (2012).
http://dx.doi.org/10.1063/1.4729302
22.
22.Y. Hajati, M. Z. Shoushtari, and G. Rashedi, J. Appl. Phys. 112, 013901 (2012).
http://dx.doi.org/10.1063/1.4730631
23.
23.G. Deutscher, Rev. Mod. Phys. 77, 109 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.109
24.
24.S. Kashiwaya and Y. Tanaka, Rep. Prog. Phys. 63, 1641 (2000).
http://dx.doi.org/10.1088/0034-4885/63/10/202
25.
25.G. Geerk, X. X. Xi, and G. Linker, Z. phys. B 73, 329 (1988).
http://dx.doi.org/10.1007/BF01314271
26.
26.C. R. Hu, Phys. Rev. Lett. 72, 1526 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.1526
27.
27.M. Covington, M. Aprili, E. Paraoanu, L. H. Green, F. Xu, J. Zhu, and C. A. Mirkin, Phys. Rev. Lett. 79, 277 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.277
28.
28.M. Fogelstrom, D. Rainer, and J. A. Sauls, Phys. Rev. Lett. 79, 281 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.281
29.
29.J. X. Zhu and C. S. Ting, Phys. Rev. B 57, 3038 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.3038
30.
30.M. Matsumoto and H. Shiba, Phys. Soc. Jpn 64, 3384 (1995).
http://dx.doi.org/10.1143/JPSJ.64.3384
31.
31.N. Stefanakis, J. Phys.: Condens. Matter 13, 1265 (2001).
http://dx.doi.org/10.1088/0953-8984/13/6/307
32.
32.J. Linder and A. Sudbø, Phys. Rev. Lett. 99, 147001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.147001
33.
33.J. Zou and G. Jin, Europe. Phys. Lett. 87, 27008 (2009).
http://dx.doi.org/10.1209/0295-5075/87/27008
34.
34.T. Yokoyama, J. Linder, and A. Sudbø, Phys. Rev. B 83, 081418 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.081418
35.
35.M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1975).
36.
36.G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).
http://dx.doi.org/10.1103/PhysRevB.25.4515
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/4/10.1063/1.4917456
Loading
/content/aip/journal/adva/5/4/10.1063/1.4917456
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/4/10.1063/1.4917456
2015-04-08
2016-10-01

Abstract

We investigate the charge transport through a graphene-based ferromagnetic-insulator-superconductor junction with a broken time reversal symmetry (BTRS) of 2 2 + and 2 2 + superconductor using the extended Blonder-Tinkham-Klapwijk formalism. Our analysis have shown several charateristics in this junction, providing a useful probe to understand the role of the order parameter symmetry in the superconductivity. We find that the presence of the BTRS () state in the superconductor region has a strong effect on the tunneling conductance curves which leads to a decrease in the height of the zero-bias conductance peak (ZBCP). In particular, we show that the magnitude of the superconducting proximity effect depends to a great extent on and by increasing , the zero-bias charge conductance oscillations with respect to the rotation angle are suppressed. In addition, we find that at the maximum rotation angle = /4, introducing BTRS in the FIS junction causes oscillatory behavior of the zero-bias charge conductance with the barrier strength () by a period of and by approaching the to 1, the amplitude of charge conductance oscillations increases. This behavior is drastically different from none BTRS similar graphene junctions. At last, we suggest an experimental setup for verifying our predicted effects.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/4/1.4917456.html;jsessionid=7wWVXOmrcu2L2qQlmVi5xLcb.x-aip-live-03?itemId=/content/aip/journal/adva/5/4/10.1063/1.4917456&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/4/10.1063/1.4917456&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/4/10.1063/1.4917456'
Right1,Right2,Right3,