Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/4/10.1063/1.4917494
1.
1.N. Bloembergen, Nonlinear Optics, Lecture Notes (W. A. Benjamin, New York, 1965).
2.
2.Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 2003).
3.
3.R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic/Elsevier, Burlington, 2008).
4.
4.B. E. Urban, P. Neogi, K. Senthilkumar, S. K. Rajpurohit, P. Jagadeeshwaran, S. Kim, Y. Fujita, and A. Neogi, IEEE Journal of Selected Topics in Quantum Electronics 18, 1451 (2012).
http://dx.doi.org/10.1109/JSTQE.2012.2184793
5.
5.T. Numai, Fundamentals of Semiconductor Lasers (Springer, New York, 2004).
6.
6.C. Koos, Nanophotonic Devices for Linear and Nonlinear Optical Signal Processing (Karlsruhe Series in Photonics & Communications, Germany, 2007), Vol. 1.
7.
7.I. Fushman, Ph.D. dissertation,Stanford University, 2008. http://web.stanford.edu/group/nqp/jv_files/thesis/IF_Thesis_v3f.pdf.
8.
8.S. Sauvage, P. Boucaud, T. Brunhes, F. Glotin, R. Prazeres, J. M. Ortega, and J. M. Gerard, Phys. Rev. B. 63, 113312 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.113312
9.
9.P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Phys. Rev. Lett. 7, 118 (1961).
http://dx.doi.org/10.1103/PhysRevLett.7.118
10.
10.D. S. Bethune, R. W. Smith, and Y. R. Shen, Phys. Rev. Lett. 37, 431 (1976).
http://dx.doi.org/10.1103/PhysRevLett.37.431
11.
11.D. S. Bethune, R. W. Smith, and Y. R. Shen, Phys. Rev. A 17, 277 (1978).
http://dx.doi.org/10.1103/PhysRevA.17.277
12.
12.A. B. Djurisic and Y. H. Leung, Small 2, 944 (2006).
http://dx.doi.org/10.1002/smll.200600134
13.
13.I. Karabulut and S. Baskoutas, J. Comput. Theor. Nanosci. 6, 153 (2009).
http://dx.doi.org/10.1166/jctn.2009.1020
14.
14.J. Florez and A. Camacho, Nanoscale Research Letters 6, 268 (2011).
http://dx.doi.org/10.1186/1556-276X-6-268
15.
15.S. Winter, M. Zielinski, D. Chauvat, J. Zyss, and D. Oron, J. Phys. Chem. C 115, 4558 (2011).
http://dx.doi.org/10.1021/jp111790t
16.
16.F. Wu, W. Tian, J. Zhang, S. Wang, Q. X. Wan, J. N. Dai, Z. H. Wu, J. T. Xu, X. Y. Li, Y. Y. Fang, and C. Q. Chen, Optic Express 22, 14212 (2014).
http://dx.doi.org/10.1364/OE.22.014212
17.
17.L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J. P. Wolf, Appl. Phys. B 87, 399 (2007).
http://dx.doi.org/10.1007/s00340-007-2612-z
18.
18.L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J. F. Roch, Small 4, 1332 (2008).
http://dx.doi.org/10.1002/smll.200701093
19.
19.Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. D. Yang, Nature 447, 1098 (2007).
http://dx.doi.org/10.1038/nature05921
20.
20.M. Lafrentz, D. Brunne, A. V. Rodina, V. V. Pavlov, R. V. Pisarev, D. R. Yakovlev, A. Bakin, and M. Bayer, Phys. Rev. B 88, 235207 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.235207
21.
21.T. Brunhes, P. Boucaud, S. Sauvage, F. Glotin, R. Prazeres, J. M. Ortega, A. Lemaitre, and J. M. Gerard, Appl. Phys. Lett. 75, 835 (1999).
http://dx.doi.org/10.1063/1.124529
22.
22.G. Wang, Q. Guo, L. Wu, and X. Yang, Physica E 39, 75 (2007).
http://dx.doi.org/10.1016/j.physe.2007.01.010
23.
23.L. Tsang, S. L. Chuang, and S. M. Lee, Phys. Rev. B 41, 5942 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.5942
24.
24.J. Khurgin, J. Opt. Soc. Am. B 6, 1673 (1989).
http://dx.doi.org/10.1364/JOSAB.6.001673
25.
25.J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, Nano. Lett. 2, 279 (2002).
http://dx.doi.org/10.1021/nl015686n
26.
26.T. Brunhes, P. Boucaud, S. Sauvage, A. Lemaitre, J. M. Gerard, F. Glotin, R. Prazeres, and J. M. Ortega, Phys. Rev. B 61, 5562 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.5562
27.
27.A. K. Nasab, M. Sabaiean, M. Sahrai, and V. Fallahi, Condensed Matter Physics 2013, 530259 (2013).
28.
28.M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, Small 5, 2835 (2009).
http://dx.doi.org/10.1002/smll.200900399
29.
29.M. M. Fejer, S. J. B. Yoo, R. L. Byer, A. Harwitt, and J. S. Harris, Jr, Phys. Rev. Lett. 62, 1041 (1989).
http://dx.doi.org/10.1103/PhysRevLett.62.1041
30.
30.X. Q. Zhang, Z. K. Tang, M. Kawasaki, A. Ohtomo, and H. Koinuma, J. Phys. Condens. Matter 15, 5191 (2003).
http://dx.doi.org/10.1088/0953-8984/15/30/301
31.
31.U. Neumann, R. Grunwald, U. Griebner, G. Steinmeyer, and W. Seeber, Appl. Phys. Lett. 84, 170 (2004).
http://dx.doi.org/10.1063/1.1639939
32.
32.H. Morkoc and Umit Ozgur, Zinc Oxide Fundamentals, Materials and Device Technology (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2009).
33.
33.D. Maikhuri, S. P. Purohit, and K. C. Mathur, IEEE Photonics Journal 6, 2600415 (2014).
http://dx.doi.org/10.1109/JPHOT.2014.2317677
34.
34.D. Maikhuri, S. P. Purohit, and K. C. Mathur, J. Appl. Phys. 112, 104323 (2012).
http://dx.doi.org/10.1063/1.4767474
35.
35.A. Germeau, A. L. Roest, D. Vanmaekelbergh, G. Allan, C. Delerue, and E. A. Meulenkamp, Phys. Rev. Lett. 90, 097401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.097401
36.
36. Anchala, S. P. Purohit, and K. C. Mathur, Appl. Phys. Lett. 98, 043106 (2011).
http://dx.doi.org/10.1063/1.3548861
37.
37.D. Krapf, A. Davidi, J. Shappir, and A. Saar, Phys. Status Solidi A 197, 566 (2003).
http://dx.doi.org/10.1002/pssa.200306564
38.
38.Q. Shen, M. Yang, Y. P. Feng, J. W. Chai, Z. Zhang, J. S. Pan, and S. J. Wang, Appl. Phys. Lett. 95, 162104 (2009).
http://dx.doi.org/10.1063/1.3253420
39.
39.J. Robertson and B. Falabretti, J. Appl. Phys. 100, 014111 (2006).
http://dx.doi.org/10.1063/1.2213170
40.
40.J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265 (2004).
http://dx.doi.org/10.1051/epjap:2004206
41.
41.T. D. Veal, P. D. C. King, S. A. Hatfield, L. R. Bailey, C. F. McConville, B. Martel, J. C. Moreno, E. Frayssinet, F. Semond, and J. Z. Perez, Appl. Phys. Lett. 93, 202108 (2008).
http://dx.doi.org/10.1063/1.3032911
42.
42.C. Delerue and M. Lannoo, Nanostructures: Theory and Modelling (Springer, Berlin, 2004).
43.
43.M. L annoo, C. Delerue, and G. Allan, Phys. Rev. Lett. 74, 3415 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.3415
44.
44.P. G. Bolcatto and C. R. Proetto, Phys. Rev. B 59, 12487 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.12487
45.
45.S. D. Rinaldis, I. D. Amico, E. Biolatti, R. Rinaldi, R. Cingolani, and F. Rossi, Phys. Rev. B 65, 081309(R) (2002).
http://dx.doi.org/10.1103/PhysRevB.65.081309
46.
46.G. J. Vazquez, M. D. Castillo-Mussot, C. I. Mendoza, and H. N. Spector, Phys. Stat. Sol. (c) 1, S54 (2004).
http://dx.doi.org/10.1002/pssc.200304879
47.
47.S. H. Park and D. Ahn, Appl. Phys. Lett. 87, 253509 (2005).
http://dx.doi.org/10.1063/1.2149294
48.
48.G. T. Einevoll and L. J. Sham, Phys. Rev. B 49, 10533 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.10533
49.
49.J. Wu, J. Appl. Phys. 106, 011101 (2009).
http://dx.doi.org/10.1063/1.3155798
50.
50.S. Monaghan, P. K. Hurley, K. Cherkaoui, M. A. Negara, and A. Schenk, Solid-State Electronics 53, 438 (2009).
http://dx.doi.org/10.1016/j.sse.2008.09.018
51.
51.L. E. Brus, J. Chem. Phys. 79, 5566 (1983).
http://dx.doi.org/10.1063/1.445676
52.
52.J. E. Midwinter and J. Warner, Brit. J. Appl. Phys. 16, 1135 (1965).
http://dx.doi.org/10.1088/0508-3443/16/8/312
53.
53.Y. B. Yu, S. N. Zhu, and K. X. Guo, Solid State Commun. 132, 689 (2004).
http://dx.doi.org/10.1016/j.ssc.2004.09.019
54.
54.Z. E. Lu and K. X. Guo, Commun. Theor. Phys. 45, 711 (2006).
55.
55.M. Shim and P. Guyot-Sionnest, Phys. Rev. B 64, 245342 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.245342
56.
56. Krier, Mid-infrared Semiconductor Optoelectronics (Springer-Verlag, London Ltd, 2006).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/4/10.1063/1.4917494
Loading
/content/aip/journal/adva/5/4/10.1063/1.4917494
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/4/10.1063/1.4917494
2015-04-09
2016-12-10

Abstract

The second harmonic generation (SHG) and the sum frequency generation (SFG) processes are investigated in the conduction band states of the singly charged ZnO quantum dot (QD) embedded in the HfO, and the AlN matrices. With two optical fields of frequency and incident on the dot, we study the variation with frequency of the second order nonlinear polarization resulting in SHG and SFG, through the electric dipole and the electric quadrupole interactions of the pump fields with the electron in the dot. We obtain enhanced value of the second order nonlinear susceptibility in the dot compared to the bulk. The effective mass approximation with the finite confining barrier is used for obtaining the energy and wavefunctions of the quantized confined states of the electron in the conduction band of the dot. Our results show that both the SHG and SFG processes depend on the dot size, the surrounding matrix and the polarization states of the pump beams.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/4/1.4917494.html;jsessionid=VwhDU4joBLxGOy-zXukrPt9B.x-aip-live-03?itemId=/content/aip/journal/adva/5/4/10.1063/1.4917494&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/4/10.1063/1.4917494&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/4/10.1063/1.4917494'
Right1,Right2,Right3,