Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, Nanoscale 2(2), 168-187 (2010).
2.J. He, J. Chen, Y. Yu, L. Zhang, G. Zhang, S. Jiang, W. Liu, H. Song, and J. Tang, J Mater Sci: Mater Electron 25(3), 1499-1504 (2014).
3.S. Han, L. Hu, N. Gao, A. A. Al-Ghamdi, and X. Fang, Advanced Functional Materials 24(24), 3725-3733 (2014).
4.K. Deng and L. Li, Advanced Materials 26(17), 2619-2635 (2014).
5.X. Wang, W. Tian, M. Liao, Y. Bando, and D. Golberg, Chemical Society Reviews 43(5), 1400-1422 (2014).
6.D. Azulay, O. Millo, S. Silbert, I. Balberg, and N. Naghavi, Applied Physics Letters 86(21), 212102 (2005).
7.C. Voss, S. Subramanian, and C.-H. Chang, Journal of Applied Physics 96(10), 5819-5823 (2004).
8.O. Demelo, L. Hernandez, O. Zelayaangel, R. Lozadamorales, M. Becerril, and E. Vasco, Applied Physics Letters 65(10), 1278-1280 (1994).
9.H. Metin and R. Esen, Semiconductor Science and Technology 18(7), 647-654 (2003).
10.K. Heo, H. Lee, Y. Park, J. Park, H.-J. Lim, D. Yoon, C. Lee, M. Kim, H. Cheong, J. Park, J. Jian, and S. Hong, Journal of Materials Chemistry 22(5), 2173-2179 (2012).
11.H. Khallaf, I. O. Oladeji, G. Chai, and L. Chow, Thin Solid Films 516(21), 7306-7312 (2008).
12.M. A. Islam, M. S. Hossain, M. M. Aliyu, P. Chelvanathan, Q. Huda, M. R. Karim, K. Sopian, and N. Amin, Energy Procedia 33(0), 203-213 (2013).
13.H. Moualkia, S. Hariech, M. S. Aida, N. Attaf, and E. L. Laifa, Journal of Physics D-Applied Physics 42(13) (2009).
14.A. Asikoglu and M. H. Yukselici, Semiconductor Science and Technology 26(5) (2011).
15.J. Kokaj and A. E. Rakhshani, Journal of Physics D-Applied Physics 37(14), 1970-1975 (2004).
16.H. Zhang, X. Y. Ma, J. Xu, J. J. Niu, J. Sha, and D. R. Yang, Journal of Crystal Growth 246(1-2), 108-112 (2002).
17.H. Zhang, X. Y. Ma, J. Xu, and D. R. Yang, Journal of Crystal Growth 263(1-4), 372-376 (2004).
18.J. P. Enriguez and X. Mathew, Solar Energy Materials and Solar Cells 76(3), 313-322 (2003).
19.S. Rubio, J. L. Plaza, and E. Dieguez, Journal of Crystal Growth 401, 550-553 (2014).
20.X. Li, W. Li, and X. Dong, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 45(12), 9108-9110 (2006).
21.F. Y. Liu, Y. Q. Lai, J. Liu, B. Wang, S. S. Kuang, Z. A. Zhang, J. Li, and Y. X. Liu, Journal of Alloys and Compounds 493(1-2), 305-308 (2010).
22.K. S. Ramaiah, R. D. Pilkington, A. E. Hill, R. D. Tomlinson, and A. K. Bhatnagar, Materials Chemistry and Physics 68(1-3), 22-30 (2001).
23.S. Prabahar and M. Dhanam, Journal of Crystal Growth 285(1-2), 41-48 (2005).
24.D. Quinonez-Urias, A. Vera-Marquina, D. Berman-Mendoza, A. L. Leal-Cruz, L. A. Garcia-Delgado, I. E. Zaldivar-Huerta, A. Garcia-Juarez, A. G. Rojas-Hernandez, and R. Gomez-Fuentes, Optical Materials Express 4(11), 2280-2289 (2014).
25.See supplementary material at for channel length specific rise and decay times (Table 1) , linear fit (Table 2A) and nonlinear fit parameters (Table 2B).[Supplementary Material]
26.J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, Nano Letters 6(9), 1887-1892 (2006).
27.L. Yingkai, Z. Xiangping, H. Dedong, and W. Hui, J Mater Sci 41(19), 6492-6496 (2006).
28.T. Gao, Q. H. Li, and T. H. Wang, Applied Physics Letters 86(17) (2005).
29.L. Li, S. Yang, F. Han, L. Wang, X. Zhang, Z. Jiang, and A. Pan, Sensors 14(4), 7332-7341 (2014).
30.Q. Li and R. M. Penner, Nano Letters 5(9), 1720-1725 (2005).
31.W. Zhou, Y. Peng, Y. Yin, Y. Zhou, Y. Zhang, and D. Tang, AIP Advances 4(12), 123005 (2014).

Data & Media loading...


Article metrics loading...



CdS grown by chemical bath deposition (CBD) technique is very simple, robust, economical method and has potential large scale applications in solar cells, photovoltaic, photodetectors, sensors and optoelectronic devices. Here we report channel lengths (CLs) specific broadspectral photoresponse properties of commonly grown robust CdS films by CBD. The broadspectral dependent current flow has been observed in all CLs and the rise and decay times have been measured in milliseconds for visible wavelengths (400-700nm). The rise time curves showed linear dependency when measured for CLs 300, 500 and 700nm and non-linearity was observed for CLs 7μm, 45μm and 350μm. We have noticed that decrease in channel lengths down to nanometers (300 nm) increases the response time. Three steps decay time has been noticed for all CLs. The shorter channels (nm) showed two trends in decay time, small increase for wavelengths <550nm and significant increase for wavelengths >550nm. Finally, CLs specific broadspectral photosensitivity has been investigated which indicates the device geometry and fabrication method play an important role for defining the CdS based photodetectors or simulating the characteristics of a photodetector. 


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd