Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.P. Liao, M. C. Toroker, and E. A. Carter, Nano Lett. 11, 1775 (2011).
2.A. S. Teja and P. Y. Koh, Prog. Crys.Growth Charact.Mater. 55, 22 (2009).
3.L. Huo, Q. Li, H. Zhao, L. Yu, S. Gao, and J. Zhao, J. Sens. Actuators B Chem. 107, 915 (2005).
4.A. K Gupta and M. Gupta, J. Biomaterials 26, 3995 (2005).
5.L. Machala, J. Tucek, and R. Zboril, J. Chem. Mater. 23, 3255 (2011).
6.W. H. Butler, A. Bandyopadhyay, and R. Srinivasan, J. Appl. Phys. 93, 7882 (2003).
7.R. N. Bhowmika and A. Saravanan, J. Appl. Phys. 107, 053916 (2010).
8.X. He, Y. Wang, N. Wu, A. N. Caruso, E. Vescovo, K. D. Belashchenko, P. A. Dowben, and C. Binek, Nature Mater. 9, 579 (2010).
9.M. Z. Dang, D. G. Rancourt, J. E. Dutrizac, G. Lamarche, and R. Provencher, Hyperfine Interact. 117, 271 (1998).
10.T. Droubay, K. M. Rosso, S. M. Heald, D. E. McCready, C. M. Wang, and S. A. Chambers, Phys. Rev B 75, 104412 (2007).
11.N. Naresh and R. N Bhowmik, AIP Advances 1, 032121 (2011).
12.P. J. Besser, A. H. Morrish, and C. W. Searle, Phys. Rev. 153, 632 (1967).
13.S. Music, S. Popovi, and M. Risti, J. Mater. Sci. 24, 2722 (1989).
14.J. C. Papaioannoua, G. S. Patermarakisb, and H. S. Karayianni, J. Phys. Chem. Solids 66, 839 (2005).
15.B. Zhao, T. C. Kaspar, T. C. Droubay, J. McCloy, M. E. Bowden, V. Shutthanandan, S. M. Heald, and S. A. Chambers, Phys. Rev. B 84, 245325 (2011).
16.K. M. Rosso, D. M. A. Smith, and M. Dupuis, J. Chem. Phys. 118, 6455 (2003);
16.N. Iordanova, M. Dupuis, and K. M. Rosso, J. Chem. Phys. 122, 144305 (2005).
17.R. N. Bhowmik, R. Ranganathan, B. Ghosh, S. Kumar, and S. Chattopadhyay, J. Alloys Compd. 456, 348 (2008).
18.A. K. Shwarsctein, M. N. Huda, A. Walsh, Y. Yan, G. D. Stucky, Y. S. Hu, M. M. Al-Jassim, and E. W. McFarland, J. Chem. Mater. 22, 510 (2010).
19.R. N. Bhowmik, N. Naresh, B. Ghosh, and S. Banerjee, Current Appl. Phys. 14, 970 (2014).
20.R. N. Bhowmik, G. Vijayasri, and R. Ranganathan, J. Appl. Phys. 116, 123905 (2014).
21.A. G. Lone and R. N. Bhowmik, J. Magn. Magn. Mater. 379, 244 (2015).
22.Man-Rong Li et al., J. Am. Chem. Soc. 134, 3737 (2012).
23.A. Iyama and T. Kimura, Phys. Rev. B 87, 180408(R) (2013).
24.T. Birol, N. A. Benedek, H. Das, A. L. Wysocki, A. T. Mulder, B. M. Abbett, E. H. Smith, S. Ghosh, and C. J. Fennie, Current Opinion in Solid State Mater. Sci. 16, 227 (2012).
25.S. J. Stewarta, R. A. Borzib, E. D. Cabanillasc, G. Puntea, and R. C. Mercader, J. Mag. Magn. Mater. 260, 447 (2003).
26.R. Martínez, A. Kumar, R. Palai, J. F. Scott, and R. S. Katiyar, J. Phys. D: Appl. Phys. 44, 105302 (2011).
27.M. Kumar and K. L. Yadav, J. Phys.: Condens. Matter 18, L503 (2006).
28.G. Catalan, Appl. Phys. Lett. 88, 102902 (2006).
29.G. Lawes, T. Kimura, C. M. Varma, M. A. Subramanian, N. Rogado, R. J. Cava, and A. P. Ramirez, Progress in Solid State Chemistry 37, 40 (2009).
30.T. Basu, K. K. Iyer, K. Singh, and E. V. Sampathkumaran, Scientific Reports 3, 3104 (2013).
31.Z. H. Sun, B. L. Cheng, S. Dai, L. Z. Cao, Y. L. Zhou, K. J. Jin, Z. H Chen, and G. Z Yang, J. Phys. D: Appl. Phys. 39, 2481 (2006).
32.K. Sharma, V. R. Reddy, D. Kothari, A. Gupta, A. Banerjee, and V. G. Sathe, J. Phys.: Condens. Matter. 22, 146005 (2010).
33.A. Venimadhav, D. Chandrasekar, and J. K. Murthy, Appl. Nanosci. 3, 25 (2013).

Data & Media loading...


Article metrics loading...



The -FeGaO (Ga doped -FeO) sample has been stabilized in rhombohedral structure. The sample is a canted ferromagnet at 300 K and above. The spins structure starts flipping from in-plane direction to out of plane direction of the rhombohedral structure to exhibit an antiferromagnetic order below a typical temperature ∼ 215 K, known as Morin transition. The magnetic and dielectric properties of -FeGaO system have been discussed in the temperature range 123 K to 350 K to examine the effect of magnetic spins flipping process on dielectric properties. The dielectric constant has shown an anomalous peak at ∼ 310 K, followed by a rapidly decrease of dielectric constant with temperature and becomes weakly temperature dependent below Morin transition. The temperature dependent dielectric constant is accompanied with the changes in electrical conductivity, dielectric loss and phase shift of the current with respect to applied ac voltage across the material. The magnetization and dielectric constant showed a linear relation over a wide range of temperature across the Morin transition. The dielectric constant at room temperature decreases under magnetic field, which indicates magneto-dielectric effect in the system. The signature of magneto-dielectric effect reveals a coupling between spins degrees of freedom (magnetic order) and charge degrees of freedom (electric polarization) in corundum structured non-traditional ferroelectric systems.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd