Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/4/10.1063/1.4918303
1.
1.P. G. De Gennes, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1974).
2.
2.D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, Journal of Applied Physics 76, 1331 (1994).
http://dx.doi.org/10.1063/1.358518
3.
3.M. Mitov, Advanced Materials 24, 6260 (2012).
http://dx.doi.org/10.1002/adma.201202913
4.
4.V. A. Belyakov, Molecular Crystals and Liquid Crystals 488, 279 (2008).
http://dx.doi.org/10.1080/15421400802241134
5.
5.A. Chanishvili, G. Chilaya, G. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, and L. Oriol, Advanced Materials 16, 791 (2004).
http://dx.doi.org/10.1002/adma.200306542
6.
6.H. Shirvani-Mahdavi, E. Mohajerani, and S. T. Wu, Optics Express 18, 5021 (2010).
http://dx.doi.org/10.1364/OE.18.005021
7.
7.A. D. Ford, S. M. Morris, and H. J. Coles, Materials Today 9, 36 (2006).
http://dx.doi.org/10.1016/S1369-7021(06)71574-7
8.
8.L. Penninck, J. Beeckman, P. De Visschere, and K. Neyts, Journal of Applied Physics 113 (2013).
http://dx.doi.org/10.1063/1.4790873
9.
9.Y. Inoue, H. Yoshida, K. Inoue, A. Fujii, and M. Ozaki, Applied Physics Express 3 (2010).
http://dx.doi.org/10.1143/APEX.3.102702
10.
10.S. Kado, Y. Takeshima, Y. Nakahara, and K. Kimura, Journal of Inclusion Phenomena and Macrocyclic Chemistry 72, 227 (2012).
http://dx.doi.org/10.1007/s10847-011-9970-1
11.
11.Y. H. Huang, Y. Zhou, C. Doyle, and S. T. Wu, Optics Express 14, 1236 (2006).
http://dx.doi.org/10.1364/OE.14.001236
12.
12.K. Funamoto, M. Ozaki, and K. Yoshino, Japanese Journal of Applied Physics Part 2-Letters 42, L1523 (2003).
http://dx.doi.org/10.1143/JJAP.42.L1523
13.
13.L. V. Natarajan, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, H. Koerner, R. A. Vaia, and T. J. Bunning, Journal of Applied Physics 103 (2008).
http://dx.doi.org/10.1063/1.2913326
14.
14.S. Furumi and N. Tamaoki, Advanced Materials 22, 886 (2010).
http://dx.doi.org/10.1002/adma.200902552
15.
15.S. Kurihara, Y. Hatae, T. Yoshioka, M. Moritsugu, T. Ogata, and T. Nonaka, Applied Physics Letters 88 (2006).
http://dx.doi.org/10.1063/1.2172294
16.
16.G. S. Chilaya, Crystallography Reports 51, S108 (2006).
http://dx.doi.org/10.1134/S1063774506070169
17.
17.T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, C. Bailey, L. Green, Q. A. Li, and T. J. Bunning, Optics Communications 283, 3434 (2010).
http://dx.doi.org/10.1016/j.optcom.2010.04.057
18.
18.H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, Advanced Materials 13, 1069 (2001).
http://dx.doi.org/10.1002/1521-4095(200107)13:14%3C1069::AID-ADMA1069%3E3.0.CO;2-6
19.
19.H. P. Yu, B. Y. Tang, J. H. Li, and L. Li, Optics Express 13, 7243 (2005).
http://dx.doi.org/10.1364/OPEX.13.007243
20.
20.Y. Inoue, Y. Matsuhisa, H. Yoshida, R. Ozaki, H. Moritake, A. Fujii, and M. Ozaki, Molecular Crystals and Liquid Crystals 516, 182 (2010).
http://dx.doi.org/10.1080/15421400903408756
21.
21.H. Yoshida, Y. Inoue, T. Isomura, Y. Matsuhisa, A. Fujii, and M. Ozaki, Applied Physics Letters 94 (2009).
22.
22.S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, Advanced Materials 21, 3915 (2009).
http://dx.doi.org/10.1002/adma.200900916
23.
23.S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, Advanced Materials 22, 53 (2010).
http://dx.doi.org/10.1002/adma.200901487
24.
24.B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, and S. O. Kong, Advanced Materials 21, 771 (2009).
http://dx.doi.org/10.1002/adma.200800729
25.
25.Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, and M. Ozaki, Advanced Materials 23, 5498 (2011).
http://dx.doi.org/10.1002/adma.201102764
26.
26.B. W. Liu, Z. G. Zheng, X. C. Chen, and D. Shen, Optical Materials Express 3, 519 (2013).
http://dx.doi.org/10.1364/OME.3.000519
27.
27.J. Schmidtke, G. Junnemann, S. Keuker-Baumann, and H. S. Kitzerow, Applied Physics Letters 101 (2012).
http://dx.doi.org/10.1063/1.4739840
28.
28.C. A. Bailey, V. P. Tondiglia, L. V. Natarajan, M. M. Duning, R. L. Bricker, R. L. Sutherland, T. J. White, M. F. Durstock, and T. J. Bunning, Journal of Applied Physics 107, 013105 (8 pp.) (2010).
http://dx.doi.org/10.1063/1.3270410
29.
29.S. S. Choi, S. M. Morris, W. T. S. Huck, and H. J. Coles, Soft Matter 5, 354 (2009).
http://dx.doi.org/10.1039/B810691F
30.
30.S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, Thin Solid Films 499, 322 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.06.075
31.
31.M. Mohammadimasoudi, J. Beeckman, J. Shin, K. Lee, and K. Neyts, Optics Express 22, 19098 (2014).
http://dx.doi.org/10.1364/OE.22.019098
32.
32.R. A. M. Hikmet and H. Kemperman, Nature 392, 476 (1998).
http://dx.doi.org/10.1038/33110
33.
33.R. A. M. Hikmet and H. Kemperman, Liquid Crystals 26, 1645 (1999).
http://dx.doi.org/10.1080/0267829992035991645
34.
34.A. Bobrovsky and V. Shibaev, Journal of Materials Chemistry 19, 366 (2009).
http://dx.doi.org/10.1039/B814455A
35.
35.J. Chen, S. M. Morris, T. D. Wilkinson, and H. J. Coles, Applied Physics Letters 91 (2007).
36.
36.M. Mitov, E. Nouvet, and N. Dessaud, European Physical Journal E 15, 413 (2004).
http://dx.doi.org/10.1140/epje/i2004-10058-4
37.
37.K. G. Kang, L. C. Chien, and S. Sprunt, Liquid Crystals 29, 9 (2002).
http://dx.doi.org/10.1080/02678290110093732
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/4/10.1063/1.4918303
Loading
/content/aip/journal/adva/5/4/10.1063/1.4918303
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/4/10.1063/1.4918303
2015-04-13
2016-09-29

Abstract

A fast electro-optic shutter is fabricated and demonstrated. The device works independently of the polarization state of the incoming light beam. Modulation between 3% transmission and 60% transmission is obtained within a wavelength range of 50 nm with a response time of 20 μs. The device consists of two partly polymerized chiral nematic liquid crystal layers separated by a half wave plate. The transmission modulation is due to a 50 nm wavelength shift of the photonic band gap of the chiral liquid crystal realized by applying an electric field over a mixture of photo-polymerized LC and non-reactive nematic LC containing a chiral dopant. The shutter features high reflectivity in the photonic band gap. We investigate the influence of the amplitude of the applied voltage on the width and the depth of the reflection band.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/4/1.4918303.html;jsessionid=uchPFppDXodtqjbYYQCEsWpe.x-aip-live-03?itemId=/content/aip/journal/adva/5/4/10.1063/1.4918303&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/4/10.1063/1.4918303&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/4/10.1063/1.4918303'
Right1,Right2,Right3,