Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.W. S. Zhao, J. Duval, D. Ravelosona, J. -O. Klein, J. V. Kim, and C. Chappert, J. Appl. Phys. 109, 07D501 (2011).
2.L. Li, M. Debucquoy, J. Genoe, and P. Heremans, J. Appl. Phys. 107, 024519 (2010).
3.S. Sambandan, R. J. P. Kist, R. Lujan, T. Ng, A. C. Arias, and R. A. Street, J. Appl. Phys. 106, 084501 (2009).
4.O. Marinov, M. J. Deen, and R. Datars, J. Appl. Phys. 106, 064501 (2009).
5.L. Li, H. Marien, J. Genoe, M. Steyaert, and P. Heremans, IEEE Electron Dev. Lett. 31, 210-212 (2010).
6.O. Marinov, M. J. Deen, U. Zschieschang, and H. Klauk, IEEE Trans.Electron Dev. 56, 2952-2961 (2009).
7.K. Joardar, K. K. Gullapalli, C. C. McAndrew, M. E. Burnham, and A. Wild, IEEE Trans. Electron Dev. 45, 134 (1998).
8.H. Wang, T. L. Chen, and G. Gildenblat, IEEE Trans. Electron Dev. 50, 2262 (2003).
9.G. Gildenblat, X. Li, W. Wu, H. Wang, A. Jha, R. van Langevelde, Geert D. J. Smit, Andries J. Scholten, and D. B. M. Klaassen, IEEE Trans. Electron Dev. 53, 1979 (2006).
10.N. Sadachika, D. Kitamaru, Y. Uetsuji, D. Navarro, M. M. Yusoff, T. Ezaki, H. J. Mattausch, and M. M. Mattausch, IEEE Trans. Electron Dev. 53, 2017 (2006).
11.P. Agarwal, G. Saraswat, and M. J. Kumar, IEEE Trans. Electron Dev. 55, 789 (2008).
12.H. Bässler, Physica Status Solidi (b) 175, 15-56 (1993).
13.L. Li, G. Meller, and H. Kosina, Synth. Met. 157(45), 243-246 (2007).
14.R. van Langevelde and F. M. Klaassen, Solid-State Electronics 44, 409-418 (2000).
15.R. Coehoorn, W. F. Pasveer, P. A. Bobbert, and M. A. J. Michels, Phys. Rev. B 72, 155206 (2005).
16.L. Li, K.-S. Chung, and J. Jang, Appl. Phys. Lett. 98, 023305 (2011).
17.D. E. Ward, Ph.D. dissertation,Stanford Univ., Stanford, CA, 1981.
18.T. Zaki, S. Scheinert, I. Hörselmann, R. Rödel, F. Letzkus, H. Richter, U. Zschieschang, H. Klauk, and J. N. Burghartz, IEEE Trans. Electron Dev. 61, 98 (2014).

Data & Media loading...


Article metrics loading...



Developing a compact model for organic thin-film transistors (OTFTs) would be significant for designing organic circuits. Contrasting the traditional silicon transistors, OTFTs are theorized using hopping transport and a Gaussian density of states. In this work, we present a new compact model for OTFTs by introducing hopping transport theory, a Gaussian density of states, and a physical mobility model. Our compact model is completely based on surface potential and its simulations do not require any threshold voltage. Simulations based on this model agree well with experimental data.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd