Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.I. Pelant and J. Valenta, Luminescence Spectroscopy of Semiconductors (Oxford University Press, 2012).
2.W. R. McCluney, Introduction to Radiometry and Photometry (Artech House Inc., Boston London, 1994).
3.W.D. Niles and F.S. Cohen, Rev. Sci. Instr. 66, 3527 (1995).
4.J. Thigpen, F. A. Merchant, and S.K. Shah, J. Microscopy 239, 200 (2010).
5. Note, we recommend to avoid application of small spectrographs – having focal length shorter than about 25 cm – as they suffer from increasing stray light intensity which significantly affects results of sensitivity calibration obtained by measuring broad-band light sources. The stray-light-effects are strong in spectral regions where sensitivity drops down).
6.J. Valenta, R. Juhasz, and J. Linnros, J. Luminescence 98, 15 (2002).
7.J. Valenta, Nanosci. Methods 3, 11 (2014).
8.I. Pelant, T. Ostatnický, J. Valenta, K. Luterová, E. Skopalová, T. Mates, and R.G. Elliman, Appl. Phys. B 83, 87 (2006).
9. Note, the number of pixels over which signal was averaged is different from the 3x2 pixels in the schematical illustration on Fig. 2. In fact, the result of the described procedure should be independent on the number of averaged pixels; unless the signal distribution changes significantly within the averaged area (such situation must be avoided not only during calibration but also during all subsequent measurements). It means that one can adapt number of averaged pixels and a slit width (within certain limits) in order to improve signal-to-noise ratio.
10.A. M. Hartel, D. Hiller, S. Gutsch, P. Löper, S. Estradé, F. Peiró, B. Garrido, and M. Zacharias, Thin Solid Films 520, 121 (2011).
11.J.M. Zwier, G.J. van Rooij, J.W. Hofstraat, and G.J. Brakenhoff, J. Microscopy 216, 15 (2004).
12.A. Antonini, C. Liberale, and T. Fellin, Opt. Express 22, 14293 (2014).
13.G.J. Brakenhoff, G.W.H. Wurpel, K. Jalink, L. Oomen, L. Brocks, and J.M. Zwier, J. Microscopy 219, 122 (2005).
14.J. Valenta, M. Greben, S. Gutsch, D. Hiller, and M. Zacharias, Appl. Phys. Lett. 105, 243107 (2014).
15.H.E. Hellen and D. Axelrod, J. Opt. Soc. Am 4, 337 (1987).
16.J. Valenta, A. Fucikova, F. Vácha, F. Adamec, J. Humpolíěková, M. Hof, I. Pelant, K. Kůsová, K. Dohnalová, and J. Linnros, Adv. Functional Materials 18, 2666 (2008).
17.I.G. Hughes and T.P.A. Hase, Measurements And Their Uncertainties: A Practical Guide to Modern Error Analysis (Oxford University Press, Oxford, 2010).
18.U. Rau, Phys. Rev. B 76, 085303 (2007).
19.T. Fuyuki and A. Kitiyanan, Appl. Phys. A 96, 189 (2009).
20.P. Würfel, T. Trupke, T. Puzzer, E. Schäffer, W. Warta, and S.W. Glunz, J. Appl. Phys. 101, 123110 (2007).
21. This assumption may be quite rough, but the purpose of this experiment is just to demonstrate application potential of the calibrated VIS/NIR microspectroscope for SC testing via EL yield determination. If necessary, the angular distribution of EL from a SC can be characterized using the goniometer set-up as shown in Fig. 5 (but without the excitation laser).
22.T. Trupke, E. Dayb, and P. Würfel, Sol. En. Mater. & Sol. Cells 53, 103 (1996).
23.T. Kirchartz, A. Helbig, W. Reetz, M. Reuter, J. H. Werner, and U. Rau, Prog. Photovolt: Res. Appl. 17, 394 (2009).
24.M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi, and K. Yamamoto, Appl. Phys. Lett. 71, 1198 (1997).
25.I. Izzedin, D. Timmerman, T. Gregorkiewicz, A.S. Moskalenko, A.A. Prokofiev, I.N. Yassievich, and M. Fujii, Phys. Rev. B 78, 035327 (2008).
26.J. Zhao, D. Jin, E.P. Schartner, Y. Lu, Y. Liu, A.V. Zvyagin, L. Zhang, J. M. Dawes, P. Xi, J.A. Piper, E.M. Goldys, and T.M. Monro, Nature Nanotech. 8, 729 (2013).

Data & Media loading...


Article metrics loading...



Application capabilities of optical microscopes and microspectroscopes can be considerably enhanced by a proper calibration of their spectral sensitivity. We propose and demonstrate a method of relative and absolute calibration of a microspectroscope over an extraordinary broad spectral range covered by two (parallel) detection branches in visible and near-infrared spectral regions. The key point of the absolute calibration of a relative spectral sensitivity is application of the standard sample formed by a thin layer of Si nanocrystals with stable and efficient photoluminescence. The spectral PL quantum yield and the PL spatial distribution of the standard sample must be characterized by separate experiments. The absolutely calibrated microspectroscope enables to characterize spectral photon emittance of a studied object or even its luminescence quantum yield (QY) if additional knowledge about spatial distribution of emission and about excitance is available. Capabilities of the calibrated microspectroscope are demonstrated by measuring external QY of electroluminescence from a standard poly-Si solar-cell and of photoluminescence of Er-doped Si nanocrystals.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd