Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/4/10.1063/1.4919097
1.
1.C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, “Multiferroic magnetoelectric composites: Historical perspective, status and future directions,” J. Appl. Phys. 103, 0311035 (2008).
http://dx.doi.org/10.1063/1.2836410
2.
2.Y. Wang and C. W. Nan, “Enhanced ferroelectricity in Ti-doped multiferroic BiFeO3 thin films,” Appl. Phys. Lett. 89, 052903 (2006).
http://dx.doi.org/10.1063/1.2222242
3.
3.Q. H. Jiang, Z. J. Shen, J. P. Zhoua, Z. Shia, and C. W. Nan, “Magnetoelectric composites of nickel ferrite and lead zirconnate titanate prepared by spark plasma sintering,” J. Eu. Ceramic. Soc. 27, 279284 (2007).
http://dx.doi.org/10.1016/j.jeurceramsoc.2006.02.041
4.
4.J. Nie, G. Xua, Y. Yang, and C. Cheng, “Strong magnetoelectric coupling in CoFe2O4-BaTiO3 composites prepared by molten-salt synthesis method,” Materials Chemistry and Physics 115, 400403 (2009).
http://dx.doi.org/10.1016/j.matchemphys.2008.12.011
5.
5.D. Ghosh, H. Han, J. C. Nino, G. Subhash, and J. L. Jones, “Synthesis of BaTiO3-20wt%CoFe2O4 nanocomposite via spark plasma sintering,” J. Am. Ceram. Soc. 95, 25042509 (2012).
http://dx.doi.org/10.1111/j.1551-2916.2012.05221.x
6.
6.S. Agrawal, J. Cheng, R. Guo, A. S. Bhalla, R. A. Islam, and S. Priya, “Magnetoelectric properties of microwave sintered particulate composites,” Materials Letters 63, 21982200 (2009).
http://dx.doi.org/10.1016/j.matlet.2009.07.024
7.
7.P. K. Mandal and T. K. Nath, “Enhanced magnetocapacitance and dielectric property of Co0.65Zn0.35Fe2O4-PbZr0.52Ti0.48O3 magnetodielectric composites,” Journal of Alloys and Compounds 599, 7177 (2014).
http://dx.doi.org/10.1016/j.jallcom.2014.02.036
8.
8.V. R. Reddy, D. Kothari, S. K. Upadhyay, A. Gupta, N. Chauhan, and A. M. Awasthi, “Reduced leakage current of multiferroic BiFeO3 ceramics with microwave synthesis,” Ceramics International. 40, 42474250 (2014).
http://dx.doi.org/10.1016/j.ceramint.2013.08.088
9.
9.Y. V. Bykov, K. I. Rybakov, and V. E. Semenov, “High-temperature microwave processing of materials,” J.Phys.D: Appl. Phys 34, R55R75 (2001).
http://dx.doi.org/10.1088/0022-3727/34/13/201
10.
10.J. Wang, J. Binner, B. Vaidhyanathan, N. Joomun, J. Kilner, G. Dimitrakis, and T. E. Cross, “Evidence for the Microwave Effect During Hybrid Sintering,” J . Am. Ceram. Soc. 89, 19771984 (2006).
http://dx.doi.org/10.1111/j.1551-2916.2006.00976.x
11.
11.V. R. Reddy, S. K. Upadhyay, A. Gupta, A. M. Awasthi, and S. Hussain, “Enhanced dielectric and ferroelectric properties of BaTiO3 ceramics prepared by microwave assisted radiant hybrid sintering,” Ceramics International. 40, 83338339 (2014).
http://dx.doi.org/10.1016/j.ceramint.2014.01.039
12.
12.S. K. Upadhyay, V. R. Reddy, P. Bag, R. Rawat, S. M. Gupta, and A. Gupta, “Electro-caloric effect in lead-free Sn doped BaTiO3 ceramics at room temperature and low applied fields,” Appl. Phys. Lett. 105, 112907 (2014).
http://dx.doi.org/10.1063/1.4896044
13.
13.S. K. Upadhyay and V. R. Reddy, “Study of 0.9 BaTiO3-0.1 NixZn1−xFe2O4 magneto-electric composite ceramics,” J. Appl. Phys. 113, 114107 (2013).
http://dx.doi.org/10.1063/1.4796145
14.
14.S. K. Upadhyay, V. R. Reddy, and N. Lakshmi, “Study of (1-x) BaTiO3xNi0.5Zn0.5Fe2O4 (x = 5, 10 and 15%) magneto-electric ceramic composites,” Journal of Asian Ceramic Societies 1, 346350 (2013).
http://dx.doi.org/10.1016/j.jascer.2013.10.001
15.
15.Juan Rodríguez-Carvajal, “Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction,” Physica B 192, 5569 (1993).
http://dx.doi.org/10.1016/0921-4526(93)90108-I
16.
16.J. Huang, P. Du, L. Hong, Y. Dong, and M. Hong, “A percolative ferromagnetic-ferroelectric composite with significant dielectric and magnetic properties,” Adv. Mater. 19, 437440 (2007).
http://dx.doi.org/10.1002/adma.200601217
17.
17.Liangbin Hao, Dongxiang Zhou, Qiuyun Fu, and Yunxiang Hu, “Multiferroic properties of multilayered BaTiO3- CoFe2O4 composites via tape casting method,” J. Mater. Sci. 48, 178185 (2013).
http://dx.doi.org/10.1007/s10853-012-6726-2
18.
18.Purushotham Yadoji, Ramesh Peelamedu, Dinesh Agrawal, and Rustum Roy, “Microwave sintering of Ni-Zn ferrites: comparison with conventional sintering,” Materials Science and Engineering B 98, 269278 (2003).
http://dx.doi.org/10.1016/S0921-5107(03)00063-1
19.
19.A. Verma, O. P. Thakur, C. Prakash, T. C. Goel, and R. G. Mendiratta, “Temperature dependence of electrical properties of nickel zinc ferrites processed by the citrate precursor technique,” Materials Science and Engineering B 116, 16 (2005).
http://dx.doi.org/10.1016/j.mseb.2004.08.011
20.
20.A. Testino, L. Mitoseriu, V. Buscaglia, M. T. Buscaglia, I. Pallecchi, A. S. Albuquerque, V. Calzona, D. Marre, A. S. Siri, and P. Nanni, “Preparation of multiferroic composites of BaTiO3- Ni0.5Zn0.5Fe2O4 ceramics,” Journal of the European Ceramic Society 26, 30313036 (2006).
http://dx.doi.org/10.1016/j.jeurceramsoc.2006.02.022
21.
21.X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, and S. Buddhadu, “A ferroelectric ferromagnetic composite material with significant permeability and permittivity,” Adv. Functional Mater. 14, 920926 (2004).
http://dx.doi.org/10.1002/adfm.200305086
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/4/10.1063/1.4919097
Loading
/content/aip/journal/adva/5/4/10.1063/1.4919097
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/4/10.1063/1.4919097
2015-04-22
2016-12-02

Abstract

Structural, electrical and magnetic properties of magneto-electric composite ceramics viz., 0.9 (BTSO)- 0.1 (NZFO) prepared with microwave assisted radiant hybrid sintering (MARH) are reported. Phase purity and isovalent substitution of 4+ by 4+ of the samples is confirmed from x-ray diffraction and 119 Mossbauer measurements respectively. Significant suppression of leakage current and improvement of ferroelectricity is observed for the composites prepared with MARH. The observed results are explained in terms of uniform dispersion of ferrite (NZFO) phase in the ferroelectric (BTSO) matrix as evidenced from back-scattered scanning electron micrographs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/4/1.4919097.html;jsessionid=UDK7tjkMg1uTt6VnVGW6lYHT.x-aip-live-03?itemId=/content/aip/journal/adva/5/4/10.1063/1.4919097&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/4/10.1063/1.4919097&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/4/10.1063/1.4919097'
Right1,Right2,Right3,