Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/4/10.1063/1.4919098
1.
1.O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, J. Appl. Phys. 87(1), 334 (2000).
http://dx.doi.org/10.1063/1.371866
2.
2.E. T. Yua, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao, and S. S. Lau, Appl. Phys. Lett. 71(19), 2794 (1997).
http://dx.doi.org/10.1063/1.120138
3.
3.H. Morkoc, Handbook of Nitride Semiconductors and Devices (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008), Vol. 1, pp. 229-231.
4.
4.H. Morkoç, R. Cingolani, and B. Gil, Solid-State Electron. 43, 19091927 (1999).
http://dx.doi.org/10.1016/S0038-1101(99)00146-X
5.
5.O. Ambacher, Acta Phys. Pol. A 98(3), 195 (2000).
6.
6.T. Y. Edward and M. O. Monasreh, III-V Nitride Semiconductors, Applications and Devices (Taylor and Francis Books, Inc, 2003), Vol. 16, pp. 301307.
7.
7.E. T. Yu, X. Z. Dang, P. M. Asbeck, S. S. Lau, and G. J. Sullivan, J. Vac. Sci. Technol. B 17, 4 (1999).
8.
8.S. Tripathy, K. X. L. Vivian, S. B. Dolmanan, P. Y. T. Joyce, R. S. Kajen, L. K. Bera, S. L. Teo, K. M. Krishna, S. Arulkumaran, G. I. Ng, S. Vicknesh, T. Shane, W. Z. Wang, G. Q. Lo, H. Li, D. Lee, and S. Han, Appl. Phys. Lett. 101, 082110 (2012).
http://dx.doi.org/10.1063/1.4746751
9.
9.N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas, J. Appl. Phys. 83, 3656 (1998).
http://dx.doi.org/10.1063/1.366585
10.
10.C. Mizue, Y. Hori, M. Miczek, and T. Hashizume, Jap. J. of App. Phys. 50, 021001 (2011).
http://dx.doi.org/10.7567/JJAP.50.021001
11.
11.R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, IEEE Trans. Electron Devices 48, 560 (2001).
http://dx.doi.org/10.1109/16.906451
12.
12.S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and Y. Sano, Appl. Phys. Lett. 84(4), 613 (2004).
http://dx.doi.org/10.1063/1.1642276
13.
13.X. Dong, C. Kanin, D. Jose, Z. Wenhua, R. Richard, M. P. Louis, N. Kirby, C. Pane-Chane, X. Min, and D. Y. Peide, IEEE Electron Device Letters 34(6), 744 (2013).
http://dx.doi.org/10.1109/LED.2013.2244058
14.
14.X. Sun, O. I. Saadat, K. S. Chang-Liao, T. Palacios, S. Cui, and T. P. Ma, Appl.Phys. Lett. 102, 103504 (2013).
http://dx.doi.org/10.1063/1.4795717
15.
15.W. Wang, J. Derluyn, M. Germain, M. Leys, S. Degroote, D. Schreurs, and G. Borghs, Jap. J. of Appl. Phys. 45(8), L224L226 (2006).
http://dx.doi.org/10.1143/JJAP.45.L224
16.
16.J. Derluyn, S. Boeykens, K. Cheng, R. Vandersmissen, J. Das, W. Ruythooren, S. Degroote, M. R. Leys, M. Germain, and G. Borghs, J. of Appl. Phys. 98, 054501 (2005).
http://dx.doi.org/10.1063/1.2008388
17.
17.B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy, and L. F. Eastman, IEEE Electron Device Lett. 21, 268 (2000).
http://dx.doi.org/10.1109/55.843146
18.
18.X. Z. Dang, E. T. Yu, E. J. Piner, and B. T. Mc Dermott, J. Appl. Phys. 90, 1357 (2001).
http://dx.doi.org/10.1063/1.1383014
19.
19.Y. Yue, Y. Hao, J. Zhang, J. Ni, W. Mao, Q. Feng, and L. Liu, IEEE Electron Device Lett 29(8), 838 (2008).
http://dx.doi.org/10.1109/LED.2008.2000949
20.
20.M. Wormington, C. Panaccione, K. M. Matney, and K. Bowen, Phil. Trans. Roy. Soc.Lond. A 357, 2827 (1999).
http://dx.doi.org/10.1098/rsta.1999.0469
21.
21.S. K. Jana, P. Mukhopadhyay, S. Ghosh, S. Kabi, A. Bag, R. Kumar, and D. Biswas, J. Appl. Phys. 115, 174507 (2014).
http://dx.doi.org/10.1063/1.4875382
22.
22.M. Grundmann, “Interactive 1-D Poisson–Schrödinger solver BANDENG.” University of California at Santa Barbara, Santa Barbara, California (2004).
23.
23.J. E. Ayers, Heteroepitaxy of Semiconductors Theory, Growth, and Characterization (CRC Press, Taylor & Francis Group, New York, 2007), pp. 355391 and 161–174.
24.
24.I. R. Gatabi, D. W. Johnson, J. H. Woo, J. W. Anderson, M. R. Coan, E. L. Piner, and H. R. Harris, IEEE Trans. on Electron Devices 60(3) (2013).
http://dx.doi.org/10.1109/TED.2013.2242075
25.
25.V. Fiorentini, F. Bernardini, and O. Ambacher, Appl. Phys. lett. 80, 1204 (2002).
http://dx.doi.org/10.1063/1.1448668
26.
26.T. R. Prunty, J. A. Smart, E. M. Chumbes, B. K. Ridley, L. F. Eastman, and J. R. Shealy, Passivation of AlGaN/GaN heterostructures with silicon nitride for insulated gate transistors. In: Proceedings of 2000 IEEE/Cornell Conference on High Performance Devices. Itheca, NY; 2000. p. 208–14.
27.
27.H. Mosbahia, M. Gassoumia, M. Charfeddinea, M. A. Zaidia, C. Gaquiereb, and H. Maaref, J. of Optoelectronics And Advanced Materials 12(11), 2190-2193 (2010).
28.
28.S. Ghosh, A. Bag, S. K. Jana, P. Mukhopadhyay, S. M. Dinara, S. Kabi, and D. Biswas, Solid-State Electronics 96, 18 (2014).
http://dx.doi.org/10.1016/j.sse.2014.03.006
29.
29.M. Gassoumi, H. Mosbahi, M. A. Zaidi, C. Gaquiere, and H. Maaref, Semiconductors 47(7), 10081012 (2013).
http://dx.doi.org/10.1134/S1063782613070087
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/4/10.1063/1.4919098
Loading
/content/aip/journal/adva/5/4/10.1063/1.4919098
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/4/10.1063/1.4919098
2015-04-22
2016-09-28

Abstract

Enhancement of two dimensional electron gas (2DEG) concentrations at AlGaN/GaN hetero interface after a-SiN (SiN) passivation has been investigated from non-destructive High Resolution X-ray Diffraction (HRXRD) analysis, depletion depth and capacitance-voltage (C-V) profile measurement. The crystalline quality and strained in-plane lattice parameters of AlGaN and GaN were evaluated from double axis (002) symmetric (ω-2θ) diffraction scan and double axis (105) asymmetric reciprocal space mapping (DA RSM) which revealed that the tensile strain of the AlGaN layer increased by 15.6% after SiN passivation. In accordance with the predictions from theoretical solution of Schrödinger-Poisson’s equations, both electrochemical capacitance voltage (ECV) depletion depth profile and C-V characteristics analyses were performed which implied effective 9.5% increase in 2DEG carrier density after passivation. The enhancement of polarization charges results from increased tensile strain in the AlGaN layer and also due to the decreased surface states at the interface of SiN/AlGaN layer, effectively improving the carrier confinement at the interface.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/4/1.4919098.html;jsessionid=EfshwVDP-ztr6hUBZdojdneE.x-aip-live-06?itemId=/content/aip/journal/adva/5/4/10.1063/1.4919098&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/4/10.1063/1.4919098&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/4/10.1063/1.4919098'
Right1,Right2,Right3,