Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/4/10.1063/1.4919320
1.
1.X. Z. Yu, N. Kanazawa, W. Z. Zhang, T. Nagai, T. Hara, K. Kimoto, Y. Matsui, Y. Onose, and Y. Tokura, “Skyrmion flow near room temperature in an ultralow current density,” Nat. Commun. 3, 988 (2012).
http://dx.doi.org/10.1038/ncomms1990
2.
2.S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion lattice in a chiral magnet,” Science 323, 915919 (2009).
http://dx.doi.org/10.1126/science.1166767
3.
3.S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Bihlmayer, and S. Blügel, “Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions,” Nature Phys. 7, 713718 (2011).
http://dx.doi.org/10.1038/nphys2045
4.
4.A. Tonomura, X. Yu, K. Yanagisawa, T. Matsuda, Y. Onose, N. Kanazawa, H. S. Park, and Y. Tokura, “Real-space observation of skyrmion lattice in helimagnet MnSi thin samples,” Nano Lett. 12, 16731677 (2012).
http://dx.doi.org/10.1021/nl300073m
5.
5.J. Sampiao, V. Cros, S. Rohart, A. Thiaville, and A. Fert, “Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures,” Nature Nanotech. 8, 839844 (2013).
http://dx.doi.org/10.1038/nnano.2013.210
6.
6.A. Fert, V. Cros, and J. Sampaio, “Skyrmions on the track,” Nature Nanotech. 8, 152156 (2013).
http://dx.doi.org/10.1038/nnano.2013.29
7.
7.J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Current-induced skyrmion dynamics in constricted geometries,” Nature Nanotech. 8, 742747 (2013).
http://dx.doi.org/10.1038/nnano.2013.176
8.
8.Y. Zhou and M. Ezawa, “A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry,” Nature Commun. 5, 4652 (2014).
9.
9.A. N. Bogdanov and U. K. Rößler, “Chiral symmetry breaking in magnetic thin films and multilayers,” Phys. Rev. Lett. 87, 037203 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.037203
10.
10.M. Beg, D. Chernyshenko, M.-A. Bisotti, W. Wang, M. Albert, R. L. Stamps, and H. Fangohr, “Finite size effects, stability, hysteretic behaviour, and reversal mechanism of skyrmionic textures in nanostructures,” arXiv:1312.7665v2 (2014).
11.
11.H. Du, W. Ning, M. Tian, and Y. Zhang, “Magnetic vortex with skyrmionic core in a thin nanodisk of chiral magnets,” Europhys. Lett. 101, 37001 (2013).
http://dx.doi.org/10.1209/0295-5075/101/37001
12.
12.Ar. Abanov and V. L. Pokrovsky, “Skyrmion in a real magnetic film,” Phys. Rev. B 58, R8889R8892.
http://dx.doi.org/10.1103/PhysRevB.58.R8889
13.
13.I. Dzyaloshinskii, “A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics,” J. Phys. Chem. Solids 4, 241255 (1958).
http://dx.doi.org/10.1016/0022-3697(58)90076-3
14.
14.T. Moriya, “Anisotropic superexchange interaction and weak ferromagnetism,” Phys. Rev. 120, 9198 (1960).
http://dx.doi.org/10.1103/PhysRev.120.91
15.
15.X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, “Real-space observation of a two-dimensional skyrmion crystal,” Nature 465, 901904 (2010).
http://dx.doi.org/10.1038/nature09124
16.
16.C. Pfleiderer and A. Rosch, “Condensed-matter physics: Single skyrmions spotted,” Nature 465, 880881 (2010).
http://dx.doi.org/10.1038/465880a
17.
17.C. Pfleiderer, “Magnetic order: Surfaces get hairy,” Nature Phys. 7, 673674 (2011).
http://dx.doi.org/10.1038/nphys2081
18.
18.H. Du, J. P. DeGrave, F. Xue, D. Liang, W. Ning, J. Yang, M. Tian, Y. Zhang, and S. Jin, “Highly stable skyrmion state in helimagnetic MnSi nanowires,” Nano Lett. 14, 20262032 (2014).
http://dx.doi.org/10.1021/nl5001899
19.
19.A. B. Butenko, A. A. Leonov, U. K. Rößler, and A. N. Bogdanov, “Stabilization of skyrmion textures by uniaxial distortions in noncentrosymmetric cubic helimagnets,” Phys. Rev. B 82, 052403 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.052403
20.
20.X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang, S. Ishiwata, Y. Matsui, and Y. Tokura, “Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe,” Nature Mater. 10, 106109 (2011).
http://dx.doi.org/10.1038/nmat2916
21.
21.M. N. Wilson, A. B. Butenko, A. N. Bogdanov, and T. L. Monchesky, “Chiral skyrmions in cubic helimagnet films: The role of uniaxial anisotropy,” Phys. Rev. B 89, 094411 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.094411
22.
22.J.-W. Yoo, S.-J. Lee, J.-H. Moon, and K.-J. Lee, “Phase Diagram of a Single Skyrmion in Magnetic Nanowires,” IEEE Trans. Magn. 50, 1500504 (2014).
23.
23.A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. V. Waeyenberge, “The design and verification of MuMax3,” AIP Adv. 4, 107133 (2014).
http://dx.doi.org/10.1063/1.4899186
24.
24.S. Rohart and A. Thiaville, “Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii–Moriya interaction,” Phys. Rev. B 88, 184422 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.184422
25.
25.H. Y. Kwon, K. M. Bu, Y. Z. Wu, and C. Won, “Effect of anisotropy and dipole interaction on long-range order magnetic structures generated by Dzyaloshinskii–Moriya interaction,” J. Magn. Magn. Mater. 324, 21712176 (2012).
http://dx.doi.org/10.1016/j.jmmm.2012.02.044
26.
26.Y. B. Tchoe and J. H. Han, “Skyrmion generation by current,” Phys. Rev. B 85, 174416 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.174416
27.
27.Y. Zhou, E. Iacocca, A. Awad, R. K. Dumas, F. C. Zhang, H. B. Braun, and J. Åkerman, “Dynamical magnetic skyrmions,” arXiv:1404.3281 (2014).
28.
28.S. Seki, X. Z. Yu, S. Ishiwata, and Y. Tokura, “Observation of skyrmions in a multiferroic material,” Science 336, 198201 (2012).
http://dx.doi.org/10.1126/science.1214143
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/4/10.1063/1.4919320
Loading
/content/aip/journal/adva/5/4/10.1063/1.4919320
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/4/10.1063/1.4919320
2015-04-24
2016-09-30

Abstract

Skyrmions are promising information carriers in the next-generation storage and transmission devices. Appropriate design of the nanowire that permits the flow of skyrmions is, however, seldom studied. In this work, the geometrical and material parameters have been varied to investigate the favorable conditions for skyrmion formation and stability in a nanowire through micromagnetic simulations. It is found that the minimum planar dimensions have to be satisfied in order to stabilize a skyrmion. Furthermore, the nanowire thickness is also important for establishing a skyrmion. The temperature effect in the competition between the perpendicular magnetic anisotropy (PMA) and the Dzyaloshinskii–Moriya interaction (DMI) limits the skyrmion formation in a well-defined phase. On the other hand, fine tuning of the exchange stiffness and the Gilbert damping constant sustain a specified portion of the phase diagram that allows for skyrmion formation. Our study also indicates that the stabilized magnetization pattern is dependent on the initial skyrmion state. These results shed light on the possible configurations that are suitable for the design of skyrmionic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/4/1.4919320.html;jsessionid=2yYCVhobH9TCmMUDbbdrZ4Oc.x-aip-live-03?itemId=/content/aip/journal/adva/5/4/10.1063/1.4919320&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/4/10.1063/1.4919320&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/4/10.1063/1.4919320'
Right1,Right2,Right3,