Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. Ando, Science 312, 1883 (2006).
2.J. J. Lee, G. Z. Xing, J. B. Yi, T. Chen, M. Ionescu, and S. Li, Appl. Phys. Lett. 104, 012405 (2014).
3.D. D. Wang, G. Z. Xing, F. Yan, Y. S. Yan, and S. Li, Appl. Phys. Lett. 104, 022412 (2014).
4.G. Z. Xing, J. B. Yi, F. Yan, T. Wu, and S. Li, Appl. Phys. Lett. 104, 202411 (2014).
5.G. Z. Xing, D. D. Wang, C. J. Cheng, M. He, S. Li, and T. Wu, Appl. Phys. Lett. 103, 022402 (2013).
6.M. Garcia, J. Merino, E. Fernández Pinel, A. Quesada, J. De la Venta, M. Ruíz González, G. Castro, P. Crespo, J. Llopis, and J. González-Calbet, Nano Lett. 7, 1489 (2007).
7.G. Rahman, V. M. García-Suárez, and S. C. Hong, Phys. Rev. B 78, 184404 (2008).
8.P. Dev, Y. Xue, and P. Zhang, Phys. Rev. Lett. 100, 117204 (2008).
9.G. Z. Xing, Y. H. Lu, Y. F. Tian, J. B. Yi, C. C. Lim, Y. F. Li, G. P. Li, D. D. Wang, B. Yao, J. Ding, Y. P. Feng, and T. Wu, AIP Advances 1, 022152 (2011).
10.D. Wang, Q. Chen, G. Xing, J. Yi, S. Rahman Bakaul, J. Ding, J. Wang, and T. Wu, Nano Lett. 12, 3994 (2012).
11.K. Dohnalová, A. N. Poddubny, A. A. Prokofiev, W. D. A. M. de Boer, C. P. Umesh, J. M. J. Paulusse, H. Zuilhof, and T. Gregorkiewicz, Light: Science & Applications 2, e47 (2013).
12.K. Sugioka and Y. Cheng, Light: Science & Applications 3, e149 (2014).
13.K.-T. Lee, J. Y. Lee, S. Seo, and L. J. Guo, Light: Science & Applications 3, e215 (2014).
14.B. Song, H. Bao, H. Li, M. Lei, T. Peng, J. Jian, J. Liu, W. Wang, W. Wang, and X. Chen, JACS 131, 1376 (2009).
15.Y. Liu, G. Wang, S. Wang, J. Yang, L. Chen, X. Qin, B. Song, B. Wang, and X. Chen, Phys. Rev. Lett. 106, 087205 (2011).
16.L. Li, W. Hua, S. Prucnal, S.-D. Yao, L. Shao, K. Potzger, and S. Zhou, Nucl. Instrum. Methods Phys. Res., Sect. B 275, 33 (2012).
17.W. Cheng, G.-Q. Liu, F.-S. Zhang, and H.-Y. Zhou, Phys. Lett. A 376, 3363 (2012).
18.J. M. Morbec and G. Rahman, Phys. Rev. B 87, 115428 (2013).
19.X. He, J. Tan, B. Zhang, M. Zhao, H. Xia, X. Liu, Z. He, X. Yang, and X. Zhou, Appl. Phys. Lett. 103, 262409 (2013).
20.J. Barzola-Quiquia, P. Esquinazi, M. Rothermel, D. Spemann, T. Butz, and N. García, Phys. Rev. B 76 (2007).
21.H. Xia, W. Li, Y. Song, X. Yang, X. Liu, M. Zhao, Y. Xia, C. Song, T.-W. Wang, D. Zhu, J. Gong, and Z. Zhu, Adv. Mater. 20, 4679 (2008).
22.Z. Xiong, X.-C. Liu, S.-Y. Zhuo, J.-H. Yang, E.-W. Shi, and W.-S. Yan, Appl. Phys. Lett. 99, 052513 (2011).
23.K. H. Han, D. Spemann, R. Höhne, A. Setzer, T. Makarova, P. Esquinazi, and T. Butz, Carbon 41, 785 (2003).
24.J. Lohau, S. Kirsch, A. Carl, G. Dumpich, and E. F. Wassermann, J. Appl. Phys. 86, 3410 (1999).
25.P. Esquinazi, D. Spemann, R. Höhne, A. Setzer, K. H. Han, and T. Butz, Phys. Rev. Lett. 91, 227201 (2003).
26.S.-i. Nakashima and H. Harima, physica status solidi (a) 162, 39 (1997).;2-L
27.B. Song, X. L. Chen, J. C. Han, G. Wang, H. Q. Bao, L. B. Duan, K. X. Zhu, H. Li, Z. H. Zhang, W. Y. Wang, W. J. Wang, X. H. Zhang, and S. H. Meng, J. Magn. Magn. Mater. 323, 2876 (2011).
28.M. A. Capano, B. C. Kim, A. R. Smith, E. P. Kvam, S. Tsoi, and A. K. Ramdas, J. Appl. Phys. 100, 083514 (2006).
29.M. C. R. C. Barklie, B. Holm, Y. Pacaud, and W. Skorupa, J. Electron. Mater. 26, 137 (1997).
30.G. Brauer, W. Anwand, E.-M. Nicht, J. Kuriplach, M. Sob, N. Wagner, and P. G. Coleman, Phy. Rev. B 54, 2512 (1996).
31.A. Uedono, H. Nakamori, K. Narita, J. Suzuki, X. Wang, S. B. Che, Y. Ishitani, A. Yoshikawa, and S. Ishibashi, J. Appl. Phys. 105, 054507 (2009).
32.A. Uedono, S. Ishibashi, T. Watanabe, X. Q. Wang, S. T. Liu, G. Chen, L. W. Sang, M. Sumiya, and B. Shen, J. Appl. Phys. 112, 014507 (2012).
33.G. Brauer, W. Anwand, P. G. Coleman, A. P. Knights, F. Plazaola, Y. Pacaud, W. Skorupa, J. Stormer, and P. Willutzki, Phys. Rev. B 54, 3084 (1996).
34.N. Son, P. Carlsson, J. ul Hassan, E. Janzén, T. Umeda, J. Isoya, A. Gali, M. Bockstedte, N. Morishita, T. Ohshima, and H. Itoh, Phys. Rev. Lett. 96, 055501 (2006).
35.K. Lee and C. Lee, Phys. Rev. Lett. 97, 137206 (2006).

Data & Media loading...


Article metrics loading...



Room-temperature ferromagnetism is observed in proton irradiated 4H-SiC single crystal. An initial increase in proton dose leads to pronounced ferromagnetism, accompanying with obvious increase in vacancy concentration. Further increase in irradiation dose lowers the saturation magnetization with the decrease in total vacancy defects due to the defects recombination. It is found that divacancies are the mainly defects in proton irradiated 4H-SiC and responsible for the observed ferromagnetism.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd