Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.R. Waser and M. Aono, Nature Materials 6, 833 (2007).
2.E. Linn, R. Rosezin, C. Kuegeler, and R. Waser, Nature Materials 9, 403 (2010).
3.D. S. Jeong, H. Schroeder, U. Breuer, and R. Waser, Journal of Applied Physics 104, 123716 (2008).
4.M. Janousch, G. I. Meijer, U. Staub, B. Delley, S. F. Karg, and B. P. Andreasson, Advanced Materials 19, 2232 (2007).
5.R. Dittmann, R. Muenstermann, I. Krug, D. Park, T. Menke, J. Mayer, A. Besmehn, F. Kronast, C. Schneider, and R. Waser, Proceedings of the IEEE 100, 1979 (2012).
6.R. Muenstermann, T. Menke, R. Dittmann, S. Mi, C.-L. Jia, D. Park, and J. Mayer, Journal of Applied Physics 108, 124504 (2010).
7.K. Shibuya, R. Dittmann, S. Mi, and R. Waser, Advanced Materials 22, 411 (2010).
8.D. M. Smyth, The defect chemistry of metal oxides (Oxford University Press, New York, 2000).
9.D. J. Keeble, S. Wicklein, L. Jin, C. L. Jia, W. Egger, and R. Dittmann, Physical Review B 87, 195409 (2013).
10.T. Suzuki, Y. Nishi, and M. Fujimoto, Philosophical Magazine A 80, 621 (2000).
11.Y. Tokuda, S. Kobayashi, T. Ohnishi, T. Mizoguchi, N. Shibata, Y. Ikuhara, and T. Yamamoto, Applied Physics Letters 99, 173109 (2011).
12.T. Ohnishi, K. Shibuya, T. Yamamoto, and M. Lippmaa, Journal of Applied Physics 103, 103703 (2008).
13.Y. Tokuda, S. Kobayashi, T. Ohnishi, T. Mizoguchi, N. Shibata, Y. Ikuhara, and T. Yamamoto, Applied Physics Letters 99, 033110 (2011).
14.H. Du, C. Jia, J. Mayer, J. Barthel, C. Lenser, and R. Dittmann, (2015).
15.W. Jiang, M. Noman, Y. M. Lu, J. A. Bain, P. A. Salvador, and M. Skowronski, Journal of Applied Physics 110, 034509 (2011).
16.R. J. Kamaladasa, M. Noman, W. Chen, P. A. Salvador, J. A. Bain, M. Skowronski, and Y. N. Picard, Journal of Applied Physics 113, 234510 (2013).
17.C. Lenser, Z. Connell, A. Kovcs, R. Dunin-Borkowski, A. Koehl, R. Waser, and R. Dittmann, Applied Physics Letters 102, 183504 (2013).
18.Y. S. Kim, J. Kim, M. J. Yoon, C. H. Sohn, S. B. Lee, D. Lee, B. C. Jeon, H. K. Yoo, T. W. Noh, A. Bostwick, E. Rotenberg, J. Yu, S. D. Bu, and B. S. Mun, Applied Physics Letters 104, 013501 (2014).
19.S. Wicklein, A. Sambri, S. Amoruso, X. Wang, R. Bruzzese, A. Koehl, and R. Dittmann, Applied Physics Letters 101, 131601 (2012).
20.C. Xu, S. Wicklein, A. Sambri, S. Amoruso, M. Moors, and R. Dittmann, Journal of Physics D: Applied Physics 47, 034009 (2014).
21.S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).
22.S. Menzel, M. Waters, A. Marchewka, U. Boettger, R. Dittmann, and R. Waser, Advanced Functional Materials 21, 4487 (2011).
23.D. Ielmini, F. Nardi, and C. Cagli, Nanotechnology 22, 254022 (2011).
24.G. Bersuker, D. C. Gilmer, D. Veksler, P. Kirsch, L. Vandelli, A. Padovani, L. Larcher, K. McKenna, A. Shluger, V. Iglesias, M. Porti, and M. Nafra, Journal of Applied Physics 110, 124518 (2011).
25.W. Jiang, R. J. Kamaladasa, Y. M. Lu, A. Vicari, R. Berechman, P. A. Salvador, J. A. Bain, Y. N. Picard, and M. Skowronski, Journal of Applied Physics 110, 054514 (2011).
26.V. Metlenko, A. H. H. Ramadan, F. Gunkel, H. Du, H. Schraknepper, S. Hoffmann-Eifert, R. Dittmann, R. Waser, and R. A. D. Souza, Nanoscale 6, 12864 (2014).
27.M. Schie, A. Marchewka, T. Mueller, R. A. D. Souza, and R. Waser, Journal of Physics: Condensed Matter 24, 485002 (2012).
28.Z. Zhang, W. Sigle, W. Kurtz, and M. Ruehle, Physical Review B 66, 214112 (2002).
29.H. Du, C.-L. Jia, L. Houben, V. Metlenko, R. A. De Souza, R. Waser, and J. Mayer, Acta Materialia 89, 344 (2015).

Data & Media loading...


Article metrics loading...



Resistive switching oxides are investigated at great length as promising candidates for the next generation of non-volatile memories. It is generally assumed that defects have a strong impact on the resistive switching properties of transition metal oxides. However, the correlation between different types of defect structures and the switching properties is still elusive. We deposited single-crystalline SrTiO thin films with various cation stoichiometry by pulsed laser deposition to investigate the stoichiometry related and therefore defect dependent influence on the resistive switching properties. This letter will reveal the differences in initial states, forming steps, switching characteristics as well as retention times taking into account both point defects and extended defects. We then propose an explanation on the basis of oxygen vacancy generation and redistribution to elucidate the dependence of the resistive switching properties on the cation stoichiometry dependent defect structure.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd