Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4913993
1.
1.Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, New York, 2007).
2.
2.S. Basu, Z. M. Zhang, and C. J. Fu, Int. J. of Energy Res. 33(13), 1203 (2009).
http://dx.doi.org/10.1002/er.1607
3.
3.S. A. Biehs, E. Rousseau, and J. J. Greffet, Phys. Rev. Lett. 105(23), 234301 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.234301
4.
4.M. Laroche, R. Carminati, and J.-J. Greffet, J. of Appl. Phys. 100(6) (2006).
http://dx.doi.org/10.1063/1.2234560
5.
5.A. Narayanaswamy and G. Chen, Appl. Phys. Lett. 82(20), 3544 (2003).
http://dx.doi.org/10.1063/1.1575936
6.
6.K. Park, S. Basu, W. P. King, and Z. M. Zhang, J. Quant. Spect. Rad. Trans. 109(2), 305 (2008).
http://dx.doi.org/10.1016/j.jqsrt.2007.08.022
7.
7.P. Ben-Abdallah and S.-A. Biehs, Phys. Rev. Lett. 112(4), 044301 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.044301
8.
8.S. Basu and M. Francoeur, Appl. Phys. Lett. 98(11) (2011).
9.
9.A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, Nat. Photon. 7(12), 948 (2013).
http://dx.doi.org/10.1038/nphoton.2013.243
10.
10.S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, Phys. Rev. Lett. 109(10), 104301 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.104301
11.
11.B. Liu and S. Shen, Phys. Rev. B 87(11), 115403 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.115403
12.
12.Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, Appl. Phys. Lett. 101(13) (2012).
13.
13.S. Lang, M. Tschikin, S.-A. Biehs, A. Y. Petrov, and M. Eich, Appl. Phys. Lett. 104(12) (2014).
http://dx.doi.org/10.1063/1.4869490
14.
14.X. Liu, R. Z. Zhang, and Z. Zhang, ACS Photon. 1(9), 785 (2014).
http://dx.doi.org/10.1021/ph5001633
15.
15.R. Z. Zhang and Z. M. Zhang, J. Quant. Spec. Rad. Trans., In press (2015).
16.
16.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306(5696), 666 (2004).
http://dx.doi.org/10.1126/science.1102896
17.
17.P. Tassin, T. Koschny, and C. M. Soukoulis, Science 341(6146), 620 (2013).
http://dx.doi.org/10.1126/science.1242253
18.
18.A. K. Geim and K. S. Novoselov, Nat. Mater. 6(3), 183 (2007).
http://dx.doi.org/10.1038/nmat1849
19.
19.A. Vakil and N. Engheta, Science 332(6035), 1291 (2011).
http://dx.doi.org/10.1126/science.1202691
20.
20.K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Sol. St. Comm. 146(9–10), 351 (2008).
http://dx.doi.org/10.1016/j.ssc.2008.02.024
21.
21.Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, Nat. Phys. 4(7), 532 (2008).
http://dx.doi.org/10.1038/nphys989
22.
22.L. A. Falkovsky, J. of Phys.: Conf. Ser. 129(1), 012004 (2008).
http://dx.doi.org/10.1088/1742-6596/129/1/012004
23.
23.Y. W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, Phys. Rev. Lett. 99(24), 246803 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.246803
24.
24.Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438(7065), 201 (2005).
http://dx.doi.org/10.1038/nature04235
25.
25.K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, Phys. Rev. Lett. 101(19), 196405 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.196405
26.
26.X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324(5932), 1312 (2009).
http://dx.doi.org/10.1126/science.1171245
27.
27.C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nat. Nano. 5(10), 722 (2010).
http://dx.doi.org/10.1038/nnano.2010.172
28.
28.P.-Y. Chen and A. Alù, ACS Nano 5(7), 5855 (2011).
http://dx.doi.org/10.1021/nn201622e
29.
29.Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, Nano Lett. 14(1), 299 (2013).
http://dx.doi.org/10.1021/nl404042h
30.
30.W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, Nano Lett. 13(8), 3698 (2013).
http://dx.doi.org/10.1021/nl401591k
31.
31.C.-H. Liu, Y.-C. Chang, T. B. Norris, and Z. Zhong, Nat. Nano. 9(4), 273 (2014).
http://dx.doi.org/10.1038/nnano.2014.31
32.
32.R. Rao, G. Chen, L. M. R. Arava, K. Kalaga, M. Ishigami, T. F. Heinz, P. M. Ajayan, and A. R. Harutyunyan, Sci. Rep. 3 (2013).
33.
33.Y.-S. Kim, K. Kumar, F. T. Fisher, and E.-H. Yang, Nanotechnology 23(1), 015301 (2012).
http://dx.doi.org/10.1088/0957-4484/23/1/015301
34.
34.G. K. Dimitrakakis, E. Tylianakis, and G. E. Froudakis, Nano Lett. 8(10), 3166 (2008).
http://dx.doi.org/10.1021/nl801417w
35.
35.F. Du, D. Yu, L. Dai, S. Ganguli, V. Varshney, and A. K. Roy, Chem. Mater. 23(21), 4810 (2011).
http://dx.doi.org/10.1021/cm2021214
36.
36.J. Lee, V. Varshney, J. S. Brown, A. K. Roy, and B. L. Farmer, Appl. Phys. Lett. 100(18) (2012).
37.
37.Y. Xu, K. T. He, S. W. Schmucker, Z. Guo, J. C. Koepke, J. D. Wood, J. W. Lyding, and N. R. Aluru, Nano Lett. 11(7), 2735 (2011).
http://dx.doi.org/10.1021/nl201022t
38.
38.M. Lim, S. S. Lee, and B. J. Lee, Opt. Ex. 21(19), 22173 (2013).
http://dx.doi.org/10.1364/OE.21.022173
39.
39.M. Jablan, H. Buljan, and M. Soljačić, Phys. Rev. B 80(24), 245435 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.245435
40.
40.K. Nomura and A. H. MacDonald, Phys. Rev. Lett. 98(7), 076602 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.076602
41.
41.W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, Phys. Rev. B 80(23), 235402 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.235402
42.
42.L. A. Falkovsky and S. S. Pershoguba, Phys. Rev. B 76(15), 153410 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.153410
43.
43.S. A. Mikhailov and K. Ziegler, Phys. Rev. Lett. 99(1), 016803 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.016803
44.
44.F. J. García-Vidal, J. M. Pitarke, and J. B. Pendry, Phys. Rev. Lett. 78(22), 4289 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4289
45.
45.R. Z. Zhang, X. Liu, and Z. M. Zhang, J. Heat Trans. In press (2015).
46.
46.B. T. Draine and H. M. Lee, Astrophys. J. 285(1), 89 (1984).
http://dx.doi.org/10.1086/162480
47.
47.T. de los Arcos, M. G. Garnier, P. Oelhafen, J. W. Seo, C. Domingo, J. V. García-Ramos, and S. Sánchez-Cortés, Phys. Rev. B 71(20), 205416 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.205416
48.
48.X. J. Wang, J. D. Flicker, B. J. Lee, W. J. Ready, and Z. M. Zhang, Nanotech. 20(21), 215704 (2009).
http://dx.doi.org/10.1088/0957-4484/20/21/215704
49.
49.S. Basu and L. Wang, Appl. Phys. Lett. 102(5) (2013).
50.
50.H. Ye, X. J. Wang, W. Lin, C. P. Wong, and Z. M. Zhang, Appl. Phys. Lett. 101(14), 141909 (2012).
http://dx.doi.org/10.1063/1.4757395
51.
51.R. Messina and P. Ben-Abdallah, Sci. Rep. 3, 1383 (2013).
http://dx.doi.org/10.1038/srep01383
52.
52.B. Wang, X. Zhang, X. Yuan, and J. Teng, Appl. Phys. Lett. 100(13) (2012).
53.
53.E. H. Hwang and S. Das Sarma, Phys. Rev. B 75(20), 205418 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.205418
54.
54.C. H. Gan, H. S. Chu, and E. P. Li, Phys. Rev. B 85(12), 125431 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.125431
55.
55.X. L. Liu, R. Z. Zhang, and Z. M. Zhang, Appl. Phys. Lett. 103(21) (2013).
56.
56.O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljačić, Phys. Rev. B 85(15), 155422 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.155422
57.
57.M. Jablan, M. Soljacic, and H. Buljan, Proc. IEEE 101(7), 1689 (2013).
http://dx.doi.org/10.1109/JPROC.2013.2260115
58.
58.P. Rodriguez-Lopez, W.-K. Tse, and D. A. R. Dalvit, arXiv:1410.4387 (2014).
59.
59.T. J. Bright, X. L. Liu, and Z. M. Zhang, Opt. Ex. 22(S4), A1112 (2014).
http://dx.doi.org/10.1364/OE.22.0A1112
60.
60.M. Francoeur, M. Pinar Mengüç, and R. Vaillon, J. Quant. Spect. Rad. Trans. 110(18), 2002 (2009).
http://dx.doi.org/10.1016/j.jqsrt.2009.05.010
61.
61.J. K. Lee and J. A. Kong, Electromagnetics 3(2), 111 (1983).
http://dx.doi.org/10.1080/02726348308915180
62.
62.J. E. Sipe, JOSA B 4(4), 481 (1987).
http://dx.doi.org/10.1364/JOSAB.4.000481
63.
63.M. Auslender and S. Hava, Opt. Lett. 21(21), 1765 (1996).
http://dx.doi.org/10.1364/OL.21.001765
64.
64.M. A. K. Othman, C. Guclu, and F. Capolino, Opt. Ex. 21(6), 7614 (2013).
http://dx.doi.org/10.1364/OE.21.007614
65.
65.S. Basu and Z. M. Zhang, Appl. Phys. Lett. 95(13) (2009).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4913993
Loading
/content/aip/journal/adva/5/5/10.1063/1.4913993
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4913993
2015-02-27
2016-12-06

Abstract

It has been shown that at small separation distances, thermal radiation between hyperbolic metamaterials is enhanced over blackbodies. This theoretical study considers near-field radiation when graphene is covered on the surfaces of two semi-infinite vertically aligned carbon nanotube (VACNT) arrays separated by a sub-micron vacuum gap. Doped graphene is found to improve photon tunneling in a broad hyperbolic frequency range, due to the interaction with graphene-graphene surface plasmon polaritons (SPP). In order to elucidate the SPP resonance between graphene on hyperbolic substrates, vacuum-suspended graphene sheets separated by similar gap distances are compared. Increasing the Fermi energy through doping shifts the spectral heat flux peak toward higher frequencies. Although the presence of graphene on VACNT does not offer huge near-field heat flux enhancement over uncovered VACNT, this study identifies conditions (i.e., gap distance and doping level) that best utilize graphene to augment near-field radiation. Through the investigation of spatial Poynting vectors, heavily doped graphene is found to increase penetration depths in hyperbolic modes and the result is sensitive to the frequency regime. This study may have an impact on designing carbon-based vacuum thermophotovoltaics and thermal switches.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4913993.html;jsessionid=5IagyU3AyFwRZAI_DWIYDqNO.x-aip-live-02?itemId=/content/aip/journal/adva/5/5/10.1063/1.4913993&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4913993&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4913993'
Right1,Right2,Right3,