Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4913994
1.
1.C. Z. Fan, Y. Gao, and J. P. Huang, Appl. Phys. Lett. 92, 251907 (2008).
http://dx.doi.org/10.1063/1.2951600
2.
2.J. Y. Li, Y. Gao, and J. P. Huang, J. Appl. Phys. 108, 074504 (2010).
http://dx.doi.org/10.1063/1.3490226
3.
3.S. Narayana and Y. Sato, Phys. Rev. Lett. 108, 214303 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.214303
4.
4.R. Schittny, M. Kadic, S. Guenneau, and M. Wegener, Phys. Rev. Lett. 102, 195901 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.195901
5.
5.T. C. Han, X. Bai, D. L. Gao, J. T. L. Thong, B. W. Li, and C. W. Qiu, Phys. Rev. Lett. 112, 054302 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.054302
6.
6.H. Y. Xu, X. H. Shi, F. Gao, H. D. Sun, and B. L. Zhang, Phys. Rev. Lett. 112, 054301 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.054301
7.
7.X. He and L.Z. Wu, Appl. Phys. Lett. 102, 211912 (2013).
http://dx.doi.org/10.1063/1.4807920
8.
8.E. H. Ooi and V. Popov, Eur. Phys. J. Appl. Phys. 63 (2013).
9.
9.Y. Gao, W.H. Wang, and J. P. Huang, Commun. Theor. Phys. 61, 517 (2014).
http://dx.doi.org/10.1088/0253-6102/61/4/18
10.
10.X. Y. Shen and J. P. Huang, Int. J. Heat Mass Transfer 78, 1 (2014).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.06.061
11.
11.T. C. Han, T. Yuan, B.W. Li, and W. C. Qiu, Sci. Rep. 3, 1593 (2013).
12.
12.W. X. Jiang, T. J. Cui, X. M. Yang, H. F. Ma, and Q. Cheng, Appl. Phys. Lett. 92, 261903 (2008).
http://dx.doi.org/10.1063/1.2953447
13.
13.Y. Gao and J. P. Huang, EPL 104, 44001 (2013).
http://dx.doi.org/10.1209/0295-5075/104/44001
14.
14.S. Guenneau, C. Amra, and D. Veynante, Opt. Express 20, 8207 (2012).
http://dx.doi.org/10.1364/OE.20.008207
15.
15.S. Guenneau and C. Amra, Opt. Express 21, 6578 (2013).
http://dx.doi.org/10.1364/OE.21.006578
16.
16.T. C. Han, X. Bai, J. T. L. Thong, B.W. Li, and C.W. Qiu, Adv. Mat. 26, 1731 (2014).
http://dx.doi.org/10.1002/adma.201304448
17.
17.G. C. Liu, C. Li, C. Chen, and G. Y. Fang, AIP Advances 4, 067120 (2014).
http://dx.doi.org/10.1063/1.4882424
18.
18.W. X. Jiang, C. W. Qiu, T. C. Han, S. Zhang, and T. J. Cui, Adv. Funct. Mater. 23, 4028 (2013).
http://dx.doi.org/10.1002/adfm.201203806
19.
19.Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, Phys. Rev. Lett. 102, 253902 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.253902
20.
20.B. Liu and J. P. Huang, Commun. Theor. Phys. 53, 560 (2010).
http://dx.doi.org/10.1088/0253-6102/53/3/30
21.
21.C. Y. Ren and Z. H. Xiang, Appl. Math. Model 38, 3774 (2014).
http://dx.doi.org/10.1016/j.apm.2013.12.005
22.
22.J. N. Han, T. D. Wen, P. Yang, and L. Zhang, AIP Advances 4, 057126 (2014).
http://dx.doi.org/10.1063/1.4880037
23.
23.Y. X. Chen, X. Y. Shen, and J. P. Huang, (submitted, 2014). Preprint: http://arxiv.org/pdf/1403.5894v1.pdf.
24.
24.J. Zhu, T. N. Chen, Q. X. Liang, X. P. Wang, and P. Jiang, J. Appl. Phys. 116, 164906 (2014).
http://dx.doi.org/10.1063/1.4900723
25.
25.J.P. Huang and K.W. Yu, Phys. Rep. 431, 87 (2006).
http://dx.doi.org/10.1016/j.physrep.2006.05.004
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4913994
Loading
/content/aip/journal/adva/5/5/10.1063/1.4913994
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4913994
2015-02-27
2016-12-10

Abstract

Since the thermal conduction equation has form invariance under coordinate transformation, one can design thermal metamaterials with novel functions by tailoring materials’ thermal conductivities. In this work, we establish a different transformation theory, and propose a layered device with anisotropic thermal conductivities. The device is able to convert heat flux from parallel patterns into non-parallel patterns and vice versa. In the mean time, the heat flux pattern outside the device keeps undisturbed as if this device is absent. We perform finite-element simulations to confirm the converting behavior. This work paves a different way to manipulate the flow of heat at will.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4913994.html;jsessionid=WplcqOjWjx8bOckNivRNcV6n.x-aip-live-06?itemId=/content/aip/journal/adva/5/5/10.1063/1.4913994&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4913994&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4913994'
Right1,Right2,Right3,