Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4913995
1.
1.M. Terraneo, M. Peyrard, and G. Casati, “Controlling the energy flow in nonlinear lattices: A model for a thermal rectifier,” Phys. Rev. Lett. 88, 094302 (2002);
http://dx.doi.org/10.1103/PhysRevLett.88.094302
1.B. Li, L. Wang, and G. Casati, “Thermal diode: Rectification of heat flux,” Phys. Rev. Lett. 93, 184301 (2004);
http://dx.doi.org/10.1103/PhysRevLett.93.184301
1.B. Li, J. Lan, and L. Wang, “Interface thermal resistance between dissimilar anharmonic lattices,” Phys. Rev. Lett. 95, 104302 (2005);
http://dx.doi.org/10.1103/PhysRevLett.95.104302
1.B. Hu, L. Yang, and Y. Zhang, “Asymmetric heat conduction in nonlinear lattices,” Phys. Rev. Lett. 97, 124302 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.124302
2.
2.B. Li, L. Wang, and G. Casati, “Negative differential resistance and thermal transistor,” Appl. Phys. Lett. 88, 143501 (2006).
http://dx.doi.org/10.1063/1.2191730
3.
3.L. Wang and B. Li, “Thermal logic gates: Computation with phonons,” Phys. Rev. Lett. 99, 177208 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.177208
4.
4.L. Wang and B. Li, “Thermal memory: A storage of phononic information,” Phys. Rev. Lett. 101, 267203 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.267203
5.
5.L. Wang and B. Li, “Phononics gets hot,” Physics World 21, 2729 (2008);
5.N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, “Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond,” Rev. Mod. Phys. 84, 10451066 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.1045
6.
6.A. Majumdar, “Thermoelectricity in semiconductor nanostructures,” Science 303, 777778 (2004).
http://dx.doi.org/10.1126/science.1093164
7.
7.M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J.-P. Fleurial, and P. Gogna, “New directions for low-dimensional thermoelectric materials,” Advanced Materials 19, 10431053 (2007).
http://dx.doi.org/10.1002/adma.200600527
8.
8.G. Casati, C. Mejia-Monasterio, and T. Prosen, “Increasing thermoelectric efficiency: A dynamical systems approach,” Phys. Rev. Lett. 101, 016601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.016601
9.
9.G. Casati, L. Wang, and T. Prosen, “A one-dimensional hard-point gas and thermoelectric efficiency,” J. Stat. Mech. L03004 (2009).
10.
10.G. Benenti, G. Casati, and J. Wang, “Conservation laws and thermodynamic efficiencies,” Phys. Rev. Lett. 110, 070604 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.070604
11.
11.C. Mejia-Monasterio, H. Larralde, and F. Leyvraz, “Coupled normal heat and matter transport in a simple model system,” Phys. Rev. Lett. 86, 54175420 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.5417
12.
12.A. Dhar, “Heat conduction in a one-dimensional gas of elastically colliding particles of unequal masses,” Phys. Rev. Lett. 86, 35543557 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3554
13.
13.P. Grassberger, W. Nadler, and L. Yang, “Heat conduction and entropy production in a one-dimensional hard-particle gas,” Phys. Rev. Lett. 89, 180601 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.180601
14.
14.G. Casati and T. Prosen, “Anomalous heat conduction in a one-dimensional ideal gas,” Phys. Rev. E 67, 015203 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.015203
15.
15.J. Wang, G. Casati, T. Prosen, and C.-H. Lai, “One-dimensional hard-point gas as a thermoelectric engine,” Phys. Rev. E 80, 031136 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.031136
16.
16.O. M. Braun and Y. S. Kivshar, “Nonlinear dynamics of the frenkel kontorova model,” Phys. Rep. 306, 1108 (1998).
http://dx.doi.org/10.1016/S0370-1573(98)00029-5
17.
17.C. A. Domenicali, “Irreversible thermodynamics of thermoelectricity,” Rev. Mod. Phys. 26, 237275 (1954).
http://dx.doi.org/10.1103/RevModPhys.26.237
18.
18.H. Callen, “The application of onsager’s reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects,” Phys. Rev. 73, 13491358 (1948).
http://dx.doi.org/10.1103/PhysRev.73.1349
19.
19.S. Lepri, R. Livi, and A. Politi, “Thermal conduction in classical low-dimensional lattices,” Phys. Rep. 377, 1 (2003).
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
20.
20.A. Dhar, “Heat transport in low-dimensional systems,” Adv. Phys. 57, 457 (2008).
http://dx.doi.org/10.1080/00018730802538522
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4913995
Loading
/content/aip/journal/adva/5/5/10.1063/1.4913995
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4913995
2015-02-27
2016-12-10

Abstract

Heat and particle transport in a one-dimensional hard-point gas of elastically colliding particles are studied. In the nonequal mass case, due to the presence of on-site potential, the heat conduction of the model obeys the Fourier law and all the transport coefficients asymptotically approach constants in the thermodynamic limit. The thermoelectric figure of merit increases slowly with the system length and is proportional to the height of the potential barriers in high regime. These findings may serve as a guide for future theoretical and experimental studies.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4913995.html;jsessionid=2v2x5Y8A8edEl9ee9euXYJhG.x-aip-live-02?itemId=/content/aip/journal/adva/5/5/10.1063/1.4913995&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4913995&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4913995'
Right1,Right2,Right3,