Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4914584
1.
1.L. G. C. Rego and G. Kirczenow, Phys. Rev. Lett. 81, 232 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.232
2.
2.M. Asheghi, Y. K. Leung, S. S. Wong, and K. E. Goodson, Appl. Phys. Lett. 71, 1798 (1997).
http://dx.doi.org/10.1063/1.119402
3.
3.Y. S. Ju and K. E. Goodson, Appl. Phys. Lett. 74, 3005 (1999).
http://dx.doi.org/10.1063/1.123994
4.
4.W. J. Liu and M. Asheghi, J. Appl. Phys. 98, 123523 (2005).
http://dx.doi.org/10.1063/1.2149497
5.
5.D. Y. Li, Y. Y. Wu, P. Kim, L. Shi, P. D. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003).
http://dx.doi.org/10.1063/1.1616981
6.
6.F. X. Alvarez and D. Jou, J. Appl. Phys. 103, 094321 (2008).
http://dx.doi.org/10.1063/1.2913057
7.
7.K. Schwab, E. A. Henriksen, J. M. Worlock, and M. L. Roukes, Nature 404, 974 (2000).
http://dx.doi.org/10.1038/35010065
8.
8.Y. K. Koh and D. G. Cahill, Phys. Rev. B 76, 075207 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.075207
9.
9.A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S. Dresselhaus, K. A. Nelson, and G. Chen, Phys. Rev. Lett. 107, 095901 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.095901
10.
10.K. T. Regner, D. P. Sellan, Z. Su, C. H. Amon, A. J. McGaughey, and J. A. Malen, Nat. Commu. 4, 1640 (2013).
http://dx.doi.org/10.1038/ncomms2630
11.
11.R. B. Wilson and D. G. Cahill, Nat. Commu. 5, 5075 (2014).
http://dx.doi.org/10.1038/ncomms6075
12.
12.C. A. da Cruz, W. Li, and N. A. Katcho, Appl. Phys. Lett. 101 (2012).
http://dx.doi.org/10.1063/1.4746275
13.
13.J. Alvarez-Quintana, J. Rodriguez-Viejo, F. X. Alvarez, and D. Jou, Int. J. Heat Mass Tran. 54, 1959 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.01.006
14.
14.T. K. Hsiao, H. K. Chang, S. C. Liou, M. W. Chu, S. C. Lee, and C. W. Chang, Nature Nanotech. 8, 534 (2013).
http://dx.doi.org/10.1038/nnano.2013.121
15.
15.J. A. Johnson, A. A. Maznev, J. Cuffe, J. K. Eliason, A. J. Minnich, T. Kehoe, C. M. S. Torres, G. Chen, and K. A. Nelson, Phys. Rev. Lett. 110, 025901 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.025901
16.
16.T. K. Hsiao, B. W. Huang, H. K. Chang, S. C. Liou, M. W. Chu, S. C. Lee, and C. W. Chang, Phys. Rev. B 91, 035406 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.035406
17.
17.G. H. Zhu, H. Lee, Y. C. Lan, X. W. Wang, G. Joshi, D. Z. Wang, J. Yang, D. Vashaee, H. Guilbert, A. Pillitteri, M. S. Dresselhaus, G. Chen, and Z. F. Ren, Phys. Rev. Lett. 102, 196803 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.196803
18.
18.M. C. Wingert, Z. C. Y. Chen, E. Dechaumphai, J. Moon, J.-H. Kim, J. Xiang, and R. Chen, Nano Lett. 11, 5507 (2011).
http://dx.doi.org/10.1021/nl203356h
19.
19.J. Chen, G. Zhang, and B. W. Li, Appl. Phys. Lett. 95 (2009).
20.
20.C. Bera, N. Mingo, and S. Volz, Phys. Rev. Lett. 104, 115502 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.115502
21.
21.J. Garg, N. Bonini, B. Kozinsky, and N. Marzari, Phys. Rev. Lett. 106, 045901 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.045901
22.
22.G. F. Xie, Y. Guo, X. L. Wei, K. W. Zhang, L. Z. Sun, J. X. Zhong, G. Zhang, and Y. W. Zhang, Appl. Phys. Lett. 104, 233901 (2014).
http://dx.doi.org/10.1063/1.4882083
23.
23.D. Liu, R. G. Xie, N. Yang, B. W. Li, and J. T. L. Thong, Nano Lett. 14, 806 (2014).
http://dx.doi.org/10.1021/nl4041516
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4914584
Loading
/content/aip/journal/adva/5/5/10.1063/1.4914584
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4914584
2015-03-09
2016-12-02

Abstract

Probing length-dependent thermal conductivity of a given material has been considered as an important experimental method to determine the length of ballistic thermal conduction, or equivalently, the averaged phonon mean free path (). However, many previous thermal transport measurements have focused on varying the lateral dimensions of samples, rendering the experimental interpretation indirect. Moreover, deducing is model-dependent in many optical measurement techniques. In addition, finite contact thermal resistances and variations of sample qualities are very likely to obscure the effect in practice, leading to an overestimation of . We point out that directly investigating one-dimensional length-dependent (normalized) thermal resistance is a better experimental method to determine . In this regard, we find that no clear experimental data strongly support ballistic thermal conduction of Si or Ge at room temperature. On the other hand, data of both homogeneously-alloyed SiGe nanowires and heterogeneously-interfaced Si-Ge core-shell nanowires provide undisputed evidence for ballistic thermal conduction over several micrometers at room temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4914584.html;jsessionid=v07wxbWZxggF5SV4qC2hXpZI.x-aip-live-03?itemId=/content/aip/journal/adva/5/5/10.1063/1.4914584&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4914584&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4914584'
Right1,Right2,Right3,