Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Y. Zhong, Y. Zhang, J. Wang, and H. Zhao, “Normal heat conduction in one-dimensional momentum conserving lattices with asymmetric interactions,” Phys. Rev. E 85, 060102 (2012).
2.S. Chen, Y. Zhang, J. Wang, and H. Zhao, “Breakdown of the power-law decay prediction of the heat current correlation in one-dimensional momentum conserving lattices,” arXiv: 1204.5933.
3.L. Wang, B. Hu, and B. Li, “Validity of Fourier’s law in one-dimensional momentumconserving lattices with asymmetric interparticle interactions,” Phys. Rev. E 88, 052112 (2013).
4.S. G. Das, A. Dhar, K. Saito, C. B. Mendl, and H. Spohn, “Numerical test of hydrodynamic fluctuation theory in the Fermi-Pasta-Ulam chain,” Phys. Rev. E 90, 012124 (2014).
5.S. G. Das, A. Dhar, and O. Narayan, “Heat Conduction in the α–β Fermi–Pasta–Ulam Chain,” J. Stat. Phys. 154, 204 (2014).
6.A. V. Savin and Y. A. Kosevich, “Thermal conductivity of molecular chains with asymmetric potentials of pair interactions,” Phys. Rev. E 89, 032102 (2014).
7.O. V. Gendelman and A. V. Savin, “Normal heat conductivity in chains capable of dissociation,” Phys. Rev. E 106, 34004 (2014).
8.N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).
9.A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater. 10, 569 (2011).
10.D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93, 793818 (2003).
11.T. Luo and G. Chen, “Nanoscale heat transfer – from computation to experiment,” Physical Chemistry Chemical Physics 15, 3389 (2013).
12.M. Igeta, T. Inoue, J. Varesi, and A. Majumdar, “Thermal expansion and temperature measurement in a microscopic scale by using the atomic force microscope,” JSME International Journal Series B 42, 723 (1999).
13.C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, “Solid-state thermal rectifier,” Science 314, 1121 (2006).
14.J.-S. Wang, J. Wang, and J. , “Quantum thermal transport in nanostructures,” Eur. Phys. J. B 62, 381404 (2008).
15.N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, “Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond,” Rev. Mod. Phys. 84, 10451066 (2012).
16.R. S. Ruoff and D. C. Lorents, “Mechanical and thermal properties of carbon nanotubes,” Carbon 33, 925930 (1995).
17.S. Bandow, “Radial thermal expansion of purified multiwall carbon nanotubes measured by x-ray diffraction,” Jap. J. Appl. Phys. 36, L1403.
18.Y. Maniwa, R. Fujiwara, H. Kira, H. Tou, H. Kataura, S. Suzuki, Y. Achiba, E. Nishibori, M. Takata, M. Sakata, A. Fujiwara, and H. Suematsu, “Thermal expansion of singlewalled carbon nanotube (SWNT) bundles: X-ray diffraction studies,” Phys. Rev. B 64, 241402 (2001).
19.Y. Maniwa, R. Fujiwara, H. Kira, H. Tou, E. Nishibori, M. Takata, M. Sakata, A. Fujiwara, X. Zhao, S. Iijima, and Y. Ando, “Multiwalled carbon nanotubes grown in hydrogen atmosphere: An x-ray diffraction study,” Phys. Rev. B 64, 073105 (2001).
20.H. Jiang, B. Liu, Y. Huang, and K. Hwang, “Thermal expansion of single wall carbon nanotubes,” J. Eng. Mater. Technol. 126, 265270 (2004).
21.A. V. Dolbin, V. B. Esel’son, V. G. Gavrilko, V. G. Manzhelii, S. N. Popov, N. A. Vinnikov, N. I. Danilenko, and B. Sundqvist, “Radial thermal expansion of pure and Xe-saturated bundles of single-walled carbon nanotubes at low temperatures,” Low. Temp. Phys. 35, 484490 (2009).
22.N. R. Raravikar, P. Keblinski, A. M. Rao, M. S. Dresselhaus, L. S. Schadler, and P. M. Ajayan, “Temperature dependence of radial breathing mode Raman frequency of singlewalled carbon nanotubes,” Phys. Rev. B 66, 235424 (2002).
23.P. K. Schelling and P. Keblinski, “Thermal expansion of carbon structures,” Phys. Rev. B 68, 035425 (2003).
24.J. Fabian and P. B. Allen, “Thermal expansion and Grüneisen parameters of amorphous silicon: A realistic model calculation,” Phys. Rev. Lett. 79, 18851888 (1997).
25.D. A. Broido, A. Ward, and N. Mingo, “Lattice thermal conductivity of silicon from empirical interatomic potentials,” Phys. Rev. B 72, 014308 (2005).
26.J.-W. Jiang, J.-S. Wang, and B. Li, “Thermal expansion in single-walled carbon nanotubes and graphene: Nonequilibrium Green’s function approach,” Phys. Rev. B 80, 205429 (2009).
27.E. Fermi, J. Pasta, and S. Ulam, Studies of non Linear Problems, Collected Papers of Enrico Fermi (University of Chicago Press, Chicago, 1965), Vol. 2.
28.S. Lepri, R. Livi, and A. Politi, “Thermal conduction in classical low-dimensional lattices,” Phys. Rep. 377, 180 (2003).
29.A. Dhar, “Heat transport in low-dimensional systems,” Adv. Phys. 57, 457537 (2008).
30.P. Brüesch, Phonons: Theory and Experiments I, Lattice Dynamics and Models of Interatomic Forces (Springer-Verlag, New York, 1982).
31.D. He, S. Buyukdagli, and B. Hu, “Thermal conductivity of anharmonic lattices: Effective phonons and quantum corrections,” Phys. Rev. E 78, 061103 (2008).
32.B. Hu, D. He, L. Yang, and Y. Zhang, “Asymmetric heat conduction through a weak link,” Phys. Rev. E 74, 060101 (2006).
33.D. He, S. Buyukdagli, and B. Hu, “Origin of negative differential thermal resistance in a chain of two weakly coupled nonlinear lattices,” Phys. Rev. B 80, 104302 (2009).
34.N. Li, P. Tong, and B. Li, “Effective phonons in anharmonic lattices: Anomalous vs. normal heat conduction,” Europhys. Lett. 75, 49 (2006).

Data & Media loading...


Article metrics loading...



We study the impacts of thermal expansion, arising from the asymmetric interparticle potential, on thermal conductance in the FPU-- model. A nonmonotonic dependence of the temperature gradient and thermal conductance on the cubic interaction parameter are shown, which corresponds to the variation of the coefficient of thermal expansion. Three domains with respect to can be identified. The results are explained based on the detailed analysis of the asymmetry of the interparticle potential. The self-consistent phonon theory, which can capture the effect of thermal expansion, is developed to support our explanation in a quantitative way. Our result would be helpful to understand the issue that whether there exist normal thermal conduction in the FPU-- model.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd