Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, and E. Saitoh, Nature 464, 262 (2010).
2.A. Kirihara, K. Uchida, Y. Kajiwara, M. Ishida, Y. Nakamura, T. Manako, E. Saitoh, and S. Yorozu, Nat. Mater. 11, 686 (2012).
3.K. Uchida, M. Ishida, T. Kikkawa, A. Kirihara, T. Murakami, and E. Saitoh, J. Phys.: Condens. Matter 26, 343202 (2014).
4.K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Nature 455, 778 (2008).
5.K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, Nat. Mater. 9, 894 (2010).
6.K. Uchida, H. Adachi, T. Ota, H. Nakayama, S. Maekawa, and E. Saitoh, Appl. Phys. Lett. 97, 172505 (2010).
7.K. Uchida, T. Nonaka, T. Ota, and E. Saitoh, Appl. Phys. Lett. 97, 262504 (2010).
8.C. M. Jaworski, J. Yang, S. Mack, D. D. Awschalom, J. P. Heremans, and R. C. Myers, Nat. Mater. 9, 898 (2010).
9.S. Bosu, Y. Sakuraba, K. Uchida, K. Saito, T. Ota, E. Saitoh, and K. Takanashi, Phys. Rev. B 83, 224401 (2011).
10.C. M. Jaworski, R. C. Myers, E. Johnston-Halperin, and J. P. Heremans, Nature 487, 210 (2012).
11.R. Ramos, T. Kikkawa, K. Uchida, H. Adachi, I. Lucas, M. H. Aguirre, P. Algarabel, L. Morellón, S. Maekawa, E. Saitoh, and M. R. Ibarra, Appl. Phys. Lett. 102, 072413 (2013).
12.D. Meier, T. Kuschel, L. Shen, A. Gupta, T. Kikkawa, K. Uchida, E. Saitoh, J.-M. Schmalhorst, and G. Reiss, Phys. Rev. B 87, 054421 (2013).
13.K. Uchida, T. Nonaka, T. Kikkawa, Y. Kajiwara, and E. Saitoh, Phys. Rev. B 87, 104412 (2013).
14.P. Li, D. Ellsworth, H. Chang, P. Janantha, D. Richardson, F. Shah, P. Phillips, T. Vijayasarathy, and M. Wu, Appl. Phys. Lett. 105, 242412 (2014).
15.A. Azevedo, L. H. Vilela-Leão, R. L. Rodríguez-Suárez, A. B. Oliveira, and S. M. Rezende, J. Appl. Phys. 97, 10C715 (2005).
16.E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl. Phys. Lett. 88, 182509 (2006).
17.S. O. Valenzuela and M. Tinkham, Nature 442, 176 (2006).
18.J. Xiao, G. E. W. Bauer, K. Uchida, E. Saitoh, and S. Maekawa, Phys. Rev. B 81, 214418 (2010).
19.H. Adachi, K. Uchida, E. Saitoh, J. Ohe, S. Takahashi, and S. Maekawa, Appl. Phys. Lett. 97, 252506 (2010).
20.M. Abe, Electrochim. Acta , 45, 3337 (2000).
21.R. M. Bozorth, E. F. Tilden, and A. J. Williams, Phys. Rev. 99, 1788 (1955).
22.J. C. Slonczewski, Phys. Rev. 110, 1341 (1958).
23.Y. Suzuki, R. B. van Dover, E. M. Gyorgy, Julia M. Phillips, V. Korenivski, D. J. Werder, C. H. Chen, R. J. Cava, J. J. Krajewski, W. F. Peck, Jr., and K. B. Do, Appl. Phys. Lett. 68, 714 (1996).
24.A. Lisfi, C. M. Williams, L. T. Nguyen, J. C. Lodder, A. Coleman, H. Corcoran, A. Johnson, P. Chang, A. Kumar, and W. Morgan, Phys. Rev. B 76, 054405 (2007).
25.J. Inoue, H. Itoh, M. A. Tanaka, K. Mibu, T. Niizeki, H. Yanagihara, and E. Kita, IEEE Trans. Magn. 49, 3269 (2013).
26.T. Niizeki, Y. Utsumi, R. Aoyama, H. Yanagihara, J. Inoue, Y. Yamasaki, H. Nakao, K. Koike, and E. Kita, Appl. Phys. Lett. 103, 162407 (2013);
26.T. Niizeki, Y. Utsumi, R. Aoyama, H. Yanagihara, J. Inoue, Y. Yamasaki, H. Nakao, K. Koike, and E. Kita, Appl. Phys. Lett. 104, 059902 (2014).
27.H. Yanagihara, Y. Utsumi, T. Niizeki, J. Inoue, and E. Kita, J. Appl. Phys. 115, 17A719 (2014).
28.H. Yanagihara, M. Oka, Y. Utsumi, T. Niizeki, K. Z. Suzuki, J. Inoue, and E. Kita, IEEE Trans. Magn. 50, 2102904 (2014).
29.G. Siegel, M. C. Prestgard, S. Teng, and A. Tiwari, Sci. Rep. 4, 4429 (2014).
30. The Fe-rich composition of Fe:Co = 11:1 was used for the sample C because the magnitude of the magnetic field used in this study is too small to saturate the magnetization of CFO films with the composition of Fe:Co = 3:1 grown on MgO(001) along the hard axis ([100]).
31.T. Kikkawa, K. Uchida, S. Daimon, Y. Shiomi, H. Adachi, Z. Qiu, D. Hou, X.-F. Jin, S. Maekawa, and E. Saitoh, Phys. Rev. B 88, 214403 (2013).
32.T. Kikkawa, K. Uchida, S. Daimon, Z. Qiu, Y. Shiomi, and E. Saitoh, arXiv:1503.05764 (2015).
33. As demonstrated in Ref. 32, the suppression of the LSSE voltage by magnetic fields disappears when the thickness of the ferrimagnetic layer is thinner than thermalization lengths of low-frequency magnons.
34.J. Ren, Phys. Rev. B 88, 220406(R) (2013).

Data & Media loading...


Article metrics loading...



The longitudinal spin-Seebeck effect (LSSE) has been investigated in cobalt ferrite (CFO), an exceptionally hard magnetic spinel ferrite. A bilayer of a polycrystalline Pt and an epitaxially-strained CFO(110) exhibiting an in-plane uniaxial anisotropy was prepared by reactive rf sputtering technique. Thermally generated spin voltage in the CFO layer was measured via the inverse spin-Hall effect in the Pt layer. External-magnetic-field () dependence of the LSSE voltage ( ) in the Pt/CFO(110) sample with ∥ [001] was found to exhibit a hysteresis loop with a high squareness ratio and high coercivity, while that with shows a nearly closed loop, reflecting the different anisotropies induced by the epitaxial strain. The magnitude of has a linear relationship with the temperature difference (Δ), giving the relatively large of about 3 V/K for CFO(110) which was kept even at zero external field.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd