Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4917017
1.
1. We do not distinguish vibrations in isolated molecules and phonons in periodic lattices.
2.
2.M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, New York, 1954).
3.
3.M. Born and R. Oppenheimer, Ann. d. Phys. 84, 457 (1927).
http://dx.doi.org/10.1002/andp.19273892002
4.
4.R. van Leeuwen, Phys. Rev. B 69, 115110 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.115110
5.
5.J. M. Ziman, Electrons and Phonons, The Theory of Transport Phenomena in Solids (Oxford Univ. Press, Oxford, 1960).
6.
6.G. Grimvall, The Electron-Phonon Interaction in Metals (North-Holland, Amsterdam, 1981).
7.
7.L. J. Sham and J. M. Ziman, The Electron-phonon Interaction, vol. 15 of Solid State Physics (1963), p. 221.
8.
8.I. Hubač and S. Wilson, Frontiers in Quantum Systems in Chemistry and Physics, Proceedings of the Quantum Systems in Chemistry and Physics, “Progress in Theoretical Chemistry and Physics” (Springer, Dordrecht, 2008).
9.
9.M. Galperin, M. A. Ratner, and A. Nitzan, J. Phys.:Condens. Matter 19, 103201 (2007).
http://dx.doi.org/10.1088/0953-8984/19/10/103201
10.
10.A. P. Horsfield, D. R. Bowler, H. Ness, C. G. Sánchez, T. N. Todorov, and A. J. Fisher, Rep. Prog. Phys. 69, 1195 (2006).
http://dx.doi.org/10.1088/0034-4885/69/4/R05
11.
11.N. J. Tao, Nature Nanotech. 1, 173 (2006).
http://dx.doi.org/10.1038/nnano.2006.130
12.
12.T. N. Todorov, Philos. Mag. B 77, 965 (1998).
http://dx.doi.org/10.1080/13642819808206398
13.
13.T. N. Todorov, J. Hoekstra, and A. P. Sutton, Philos. Mag. B 80, 421 (2000).
http://dx.doi.org/10.1080/13642810008208601
14.
14.M. Di Ventra, Y.-C. Chen, and T. N. Todorov, Phys. Rev. Lett. 92, 176803 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.176803
15.
15.D. Dundas, E. J. McEniry, and T. N. Todorov, Nature Nanotech. 4, 99 (2009).
http://dx.doi.org/10.1038/nnano.2008.411
16.
16.T. N. Todorov, D. Dundas, and E. J. McEniry, Phys. Rev. B 81, 075416 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.075416
17.
17.J.-T. , M. Brandbyge, and P. Hedegård, Nano Lett. 10, 1657 (2010).
http://dx.doi.org/10.1021/nl904233u
18.
18.J.-T. , M. Brandbyge, P. Hedegård, T. N. Todorov, and D. Dundas, Phys. Rev. B 85, 245444 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.245444
19.
19.N. Bode, S. V. Kusminskiy, R. Egger, and F. von Oppen, Phys. Rev. Lett. 107, 036804 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.036804
20.
20.A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. 105, 123002 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.123002
21.
21.A. Abedi, F. Agostini, Y. Suzuki, and E. K. U. Gross, Phys. Rev. Lett. 110, 263001 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.263001
22.
22.B. C. Stipe, M. A. Rezaei, and W. Ho, Science 280, 1732 (1998).
http://dx.doi.org/10.1126/science.280.5370.1732
23.
23.H. Ness and A. J. Fisher, Phys. Rev. Lett. 83, 452 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.452
24.
24.N. Agraït, C. Untiedt, G. Rubio-Bollinger, and S. Vieira, Phys. Rev. Lett. 88, 216803 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.216803
25.
25.R. H. M. Smit, C. Untiedt, and J. M. van Ruitenbeek, Nanotechnology 15, S472 (2004).
http://dx.doi.org/10.1088/0957-4484/15/7/055
26.
26.N. Sergueev, D. Roubtsov, and H. Guo, Phys. Rev. Lett. 95, 146803 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.146803
27.
27.J. K. Viljas, J. C. Cuevas, F. Pauly, and M. Häfner, Phys. Rev. B 72, 245415 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.245415
28.
28.L. de la Vega, A. Martín-Rodero, N. Agraït, and A. L. Yeyati, Phys. Rev. B 73, 075428 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.075428
29.
29.M. Paulsson, T. Frederiksen, and M. Brandbyge, Phys. Rev. B 72, 201101 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.201101
30.
30.Z. Huang, B. Xu, Y. Chen, M. D. Ventra, and N. Tao, Nano Lett. 6, 1240 (2006).
http://dx.doi.org/10.1021/nl0608285
31.
31.M. Tsutsui, S. Kurokawa, and A. Sakai, Appl. Phys. Lett. 90, 133121 (2007).
http://dx.doi.org/10.1063/1.2719682
32.
32.J.-T. and J.-S. Wang, Phys. Rev. B 76, 165418 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.165418
33.
33.Y. Asai, Phys. Rev. B 78, 045434 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.045434
34.
34.J.-T. and J.-S. Wang, J. Phys.: Condens. Matter 21, 025503 (2009).
http://dx.doi.org/10.1088/0953-8984/21/2/025503
35.
35.Z. Ioffe, T. Shamai, A. Ophir, G. Noy, I. Yutsis, K. Kfir, O. Cheshnovsky, and Y. Selzer, Nature Nanotech. 3, 727 (2008).
http://dx.doi.org/10.1038/nnano.2008.304
36.
36.B. H. Wu and J. C. Cao, J. Phys.: Condens. Matter 21, 245301 (2009).
http://dx.doi.org/10.1088/0953-8984/21/24/245301
37.
37.Y.-J. Yu, M. Y. Han, S. Berciaud, A. B. Georgescu, T. F. Heinz, L. E. Brus, K. S. Kim, and P. Kim, Appl. Phys. Lett. 99, 183105 (2011).
http://dx.doi.org/10.1063/1.3657515
38.
38.D. R. Ward, D. A. Corley, J. M. Tour, and D. Natelson, Nature Nanotech. 6, 33 (2011).
http://dx.doi.org/10.1038/nnano.2010.240
39.
39.S. Shekhar, M. Erementchouk, M. N. Leuenberger, and S. I. Khondaker, Appl. Phys. Lett. 98, 243121 (2011).
http://dx.doi.org/10.1063/1.3600664
40.
40.R. Härtle and M. Thoss, Phys. Rev. B 83, 115414 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.115414
41.
41.S. Shekhar, H. Heinrich, and S. I. Khondaker, Carbon 50, 1635 (2012).
http://dx.doi.org/10.1016/j.carbon.2011.11.047
42.
42.R. Hützen, S. Weiss, M. Thorwart, and R. Egger, Phys. Rev. B 85, 121408 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.121408
43.
43.L. Simine and D. Segal, Phys. Chem. Chem. Phys. 14, 13820 (2012).
http://dx.doi.org/10.1039/c2cp40851a
44.
44.L. Simine and D. Segal, J. Chem. Phys. 138, 214111 (2013).
http://dx.doi.org/10.1063/1.4808108
45.
45.E. Y. Wilner, H. Wang, G. Cohen, M. Thoss, and E. Rabani, Phys. Rev. B 88, 045137 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.045137
46.
46.J. P. Bergfield and M. A. Ratner, Phys. Status Solidi B 250, 2249 (2013).
http://dx.doi.org/10.1002/pssb.201350048
47.
47.K. Kaasbjerg, T. Novotný, and A. Nitzan, Phys. Rev. B 88, 201405 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.201405
48.
48.Q. Wang, H. Xie, H. Jiao, and Y.-H. Nie, EPL 101, 47008 (2013).
http://dx.doi.org/10.1209/0295-5075/101/47008
49.
49.L. Simine and D. Segal, J. Chem. Phys. 141, 014704 (2014).
http://dx.doi.org/10.1063/1.4885051
50.
50.M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).
http://dx.doi.org/10.1002/adma.200600527
51.
51.Y. Dubi and M. Di Ventra, Rev. Mod. Phys. 83, 131 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.131
52.
52.N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Rev. Mod. Phys. 84, 1045 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.1045
53.
53.N. Yang, X. Xu, G. Zhang, and B. Li, AIP Adv. 2, 041410 (2012).
http://dx.doi.org/10.1063/1.4773462
54.
54.K. Yang, Y. Chen, R. D’Agosta, Y. Xie, J. Zhong, and A. Rubio, Phys. Rev. B 86, 045425 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.045425
55.
55.M. Leijnse, M. Wegewijs, and K. Flensberg, Phys. Rev. B 82, 045412 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.045412
56.
56.B. C. Hsu, Y.-S. Liu, S. H. Lin, and Y.-C. Chen, Phys. Rev. B 83, 041404 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.041404
57.
57.N. Sergueev, S. Shin, M. Kaviany, and B. Dunietz, Phys. Rev. B 83, 195415 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195415
58.
58.O. Entin-Wohlman, Y. Imry, and A. Aharony, Phys. Rev. B 82, 115314 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.115314
59.
59.H. Zhou, J. Thingna, J.-S. Wang, and B. Li, Phys. Rev. B 91, 045410 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.045410
60.
60.M. Büttiker, Phys. Rev. B 27, 6178 (1983).
http://dx.doi.org/10.1103/PhysRevB.27.6178
61.
61.R. A. Deegan, Phys. Rev. B 5, 1183 (1972).
http://dx.doi.org/10.1103/PhysRevB.5.1183
62.
62.J. Ashkenazi and M. Dacorogna, Physica B+C 107, 669 (1981).
http://dx.doi.org/10.1016/0378-4363(81)90637-9
63.
63.E. Cappelluti and L. Pietronero, J. Phys. Chem. Solids 67, 1941 (2006).
http://dx.doi.org/10.1016/j.jpcs.2006.05.039
64.
64.T. Frederiksen, M. Paulsson, M. Brandbyge, and A.-P. Jauho, Phys. Rev. B 75, 205413 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.205413
65.
65.F. Giustino, M. L. Cohen, and S. G. Louie, Phys. Rev. B 76, 165108 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.165108
66.
66.F. Bloch, Z. Physik 52, 555 (1928).
http://dx.doi.org/10.1007/BF01339455
67.
67.H. Li, B. K. Agarwalla, and J.-S. Wang, Phys. Rev. E 86, 011141 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.011141
68.
68.J.-S. Wang, J. Wang, and J.-T. , Euro. Phys. J. B 62, 381 (2008).
http://dx.doi.org/10.1140/epjb/e2008-00195-8
69.
69.J.-S. Wang, B. Agarwalla, H. Li, and J. Thingna, Frontiers of Physics 9, 673 (2014).
http://dx.doi.org/10.1007/s11467-013-0340-x
70.
70.J.-T. and J.-S. Wang, Phys. Rev. B 78, 235436 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.235436
71.
71.H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, 2008).
72.
72.Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).
http://dx.doi.org/10.1103/PhysRevLett.68.2512
73.
73.A.-P. Jauho, N. S. Wingreen, and Y. Meir, Phys. Rev. B 50, 5528 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.5528
74.
74.M. Paulsson, T. Frederiksen, H. Ueba, N. Lorente, and M. Brandbyge, Phys. Rev. Lett. 100, 226604 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.226604
75.
75.O. Tal, M. Krieger, B. Leerink, and J. M. van Ruitenbeek, Phys. Rev. Lett. 100, 196804 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.196804
76.
76.R. Egger and A. O. Gogolin, Phys. Rev. B 77, 113405 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.113405
77.
77.O. Entin-Wohlman, Y. Imry, and A. Aharony, Phys. Rev. B 80, 035417 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.035417
78.
78.A. Majumdar and P. Reddy, Appl. Phys. Lett. 84, 4768 (2004).
http://dx.doi.org/10.1063/1.1758301
79.
79.D. Segal, Phys. Rev. Lett. 100, 105901 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.105901
80.
80.J. Ren and J.-X. Zhu, Phys. Rev. B 87, 241412 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.241412
81.
81.L. Zhang, J.-T. , J.-S. Wang, and B. Li, J. Phys.: Condens. Matter 25, 445801 (2013).
http://dx.doi.org/10.1088/0953-8984/25/44/445801
82.
82.Y. Vinkler-Aviv, A. Schiller, and N. Andrei, Phys. Rev. B 89, 024307 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.024307
83.
83.S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950).
http://dx.doi.org/10.1143/ptp/5.4.544
84.
84.J. M. Luttinger, J. Math. Phys. (N.Y.) 4, 1154 (1963).
http://dx.doi.org/10.1063/1.1704046
85.
85.K. L. Grosse, F. Xiong, S. Hong, W. P. King, and E. Pop, Appl. Phys. Lett. 102, 193503 (2013).
http://dx.doi.org/10.1063/1.4803172
86.
86.M. Tsutsui, M. Taniguchi, and T. Kawai, Nano Lett. 8, 3293 (2008).
http://dx.doi.org/10.1021/nl801669e
87.
87.A. D. Liao, J. Z. Wu, X. Wang, K. Tahy, D. Jena, H. Dai, and E. Pop, Phys. Rev. Lett. 106, 256801 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.256801
88.
88.S. Islam, Z. Li, V. E. Dorgan, M.-H. Bae, and E. Pop, IEEE Electron Device Lett. 34, 166 (2013).
http://dx.doi.org/10.1109/LED.2012.2230393
89.
89.X. Jia, M. Hofmann, V. Meunier, B. G. Sumpter, J. Campos-Delgado, J. M. Romo-Herrera, H. Son, Y.-P. Hsieh, A. Reina, J. Kong et al., Science 323, 1701 (2009).
http://dx.doi.org/10.1126/science.1166862
90.
90.M. Engelund, J. A. Fürst, A. P. Jauho, and M. Brandbyge, Phys. Rev. Lett. 104, 036807 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.036807
91.
91.J. Koch, M. Semmelhack, F. von Oppen, and A. Nitzan, Phys. Rev. B 73, 155306 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.155306
92.
92.R. Volkovich, R. Härtle, M. Thossb, and U. Peskin, Phys. Chem. Chem. Phys. 13, 14333 (2011).
http://dx.doi.org/10.1039/c1cp21161g
93.
93.Y. Asai, Phys. Rev. B 84, 085436 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.085436
94.
94.J.-W. Jiang and J.-S. Wang, J. Appl. Phys. 110, 124319 (2011).
http://dx.doi.org/10.1063/1.3671069
95.
95.A. G. Redfield, Adv. Magn. Reson. 1, 1 (1965).
http://dx.doi.org/10.1016/B978-1-4832-3114-3.50007-6
96.
96.H. Breuer and F. Petruccione, The Theory of Open Quantum Systems (OUP Oxford, 2007).
97.
97.U. Weiss, Quantum Dissipative Systems, 3rd ed. (World Scientific, 2008).
98.
98.J. Thingna, H. Zhou, and J.-S. Wang, J. Chem. Phys. 141, 194101 (2014).
http://dx.doi.org/10.1063/1.4901274
99.
99.C. H. Fleming and N. I. Cummings, Phys. Rev. E 83, 031117 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.031117
100.
100.D. Segal and A. Nitzan, Phys. Rev. Lett. 94, 034301 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.034301
101.
101.L.-A. Wu, C. X. Yu, and D. Segal, Phys. Rev. E 80, 041103 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.041103
102.
102.R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, 2001).
103.
103.J. Thingna, J. L. García-Palacios, and J.-S. Wang, Phys. Rev. B 85, 195452 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.195452
104.
104.Z.-Z. Chen, R. , and B.-F. Zhu, Phys. Rev. B 71, 165324 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.165324
105.
105.J. Koch and F. von Oppen, Phys. Rev. Lett. 94, 206804 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.206804
106.
106.Q.-F. Sun and X. C. Xie, Phys. Rev. B 75, 155306 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.155306
107.
107.E. J. McEniry, T. Frederiksen, T. N. Todorov, D. Dundas, and A. P. Horsfield, Phys. Rev. B 78, 035446 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.035446
108.
108.W. Lee, N. Jean, and S. Sanvito, Phys. Rev. B 79, 085120 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.085120
109.
109.X. Zianni, Phys. Rev. B 82, 165302 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.165302
110.
110.G. Piovano, F. Cavaliere, E. Paladino, and M. Sassetti, Phys. Rev. B 83, 245311 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.245311
111.
111.T. Koch, J. Loos, A. Alvermann, and H. Fehske, Phys. Rev. B 84, 125131 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.125131
112.
112.L.-L. Zhou and Y.-J. Li, Phys. Lett. A 376, 2506 (2012).
http://dx.doi.org/10.1016/j.physleta.2012.06.019
113.
113.L. Arrachea, N. Bode, and F. von Oppen, Phys. Rev. B 90, 125450 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.125450
114.
114.T. Koch, J. Loos, and H. Fehske, Phys. Rev. B 89, 155133 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.155133
115.
115.C. A. Perroni, D. Ninno, and V. Cataudella, Phys. Rev. B 90, 125421 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.125421
116.
116.V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Phys. Rev. B 36, 7635 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.7635
117.
117.H. Park, J. Park, A. Lim, and E. Anderson, Nature 407, 57 (2000).
http://dx.doi.org/10.1038/35024031
118.
118.J. Park, A. Pasupathy, J. Goldsmith, and C. Chang, Nature 417, 722 (2002).
http://dx.doi.org/10.1038/nature00791
119.
119.N. B. Zhitenev, H. Meng, and Z. Bao, Phys. Rev. Lett. 88, 226801 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.226801
120.
120.L. Yu and D. Natelson, Nano Lett. 4, 79 (2004).
http://dx.doi.org/10.1021/nl034893f
121.
121.N. Agraït, C. Untiedt, G. Rubio-Bollinger, and S. Vieira, Phys. Rev. Lett. 88, 216803 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.216803
122.
122.N. Agraït, Nicolát, C. Untiedt, G. Rubio-Bollinger, and S. Vieira, Chem. Phys. 0301, 231 (2002).
http://dx.doi.org/10.1016/S0301-0104(02)00342-7
123.
123.N. Wingreen, K. Jacobsen, and J. Wilkins, Phys. Rev. Lett. 61, 1396 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.1396
124.
124.K. Flensberg, Phys. Rev. B 68, 205323 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.205323
125.
125.A. Mitra, I. Aleiner, and A. J. Millis, Phys. Rev. B 69, 245302 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.245302
126.
126.M. Galperin, A. Nitzan, and M. A. Ratner, Phys. Rev. B 74 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.075326
127.
127.M. Galperin, M. A. Ratner, and A. Nitzan, J. Chem. Phys. 121, 11965 (2004).
http://dx.doi.org/10.1063/1.1814076
128.
128.A. Zazunov and T. Martin, Phys. Rev. B 76, 033417 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.033417
129.
129.R. Härtle and M. Thoss, Phys. Rev. B 83, 115414 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.115414
130.
130.R. C. Monreal, F. Flores, and A. Martin-Rodero, Phys. Rev. B 82, 24 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.235412
131.
131.A. Zazunov, D. Feinberg, and T. Martin, Phys. Rev. B 73, 115405 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.115405
132.
132.B. LeRoy, S. Lemay, J. Kong, and C. Dekker, Nature 432, 371 (2004).
http://dx.doi.org/10.1038/nature03046
133.
133.J. Ren, J.-X. Zhu, J. E. Gubernatis, C. Wang, and B. Li, Phys. Rev. B 85, 155443 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.155443
134.
134.B. C. Hsu, C.-W. Chiang, and Y.-C. Chen, Nanotechnology 23, 275401 (2012).
http://dx.doi.org/10.1088/0957-4484/23/27/275401
135.
135.J.-T. , P. Hedegård, and M. Brandbyge, Phys. Rev. Lett. 107, 046801 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.046801
136.
136.R. Härtle and M. Thoss, Phys. Rev. B 83, 125419 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.125419
137.
137.M. Galperin, A. Nitzan, and M. Ratner, Phys. Rev. B 76, 035301 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.035301
138.
138.Y. M. Blanter, O. Usmani, and Y. V. Nazarov, Phys. Rev. Lett. 93, 136802 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.136802
139.
139.A. A. Clerk and S. Bennett, N. J. Phys. 7, 238 (2005).
http://dx.doi.org/10.1088/1367-2630/7/1/238
140.
140.D. Mozyrsky, I. Martin, and M. B. Hastings, Phys. Rev. Lett. 92, 018303 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.018303
141.
141.S. Zippilli, A. Bachtold, and G. Morigi, Phys. Rev. B 81, 205408 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.205408
142.
142.A. Naik, O. Buu, M. D. Lahaye, A. D. Armour, A. A. Clerk, M. P. Blencowe, and K. C. Schwab, Nature (London) 443, 193 (2006).
http://dx.doi.org/10.1038/nature05027
143.
143.Y. Dubi and M. Di Ventra, Phys. Rev. E 79, 042101 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.042101
144.
144.P. A. Jacquet and C.-A. Pillet, Phys. Rev. B 85, 125120 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.125120
145.
145.J. P. Bergfield, S. M. Story, R. C. Stafford, and C. A. Stafford, ACS Nano 7, 4429 (2013).
http://dx.doi.org/10.1021/nn401027u
146.
146.R. P. Feynman and F. L. Vernon, Ann. Phys. 24, 118 (1963).
http://dx.doi.org/10.1016/0003-4916(63)90068-X
147.
147.H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th ed. (World Scientific, 2009).
148.
148.J. T. Stockburger and H. Grabert, Phys. Rev. Lett. 88, 170407 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.170407
149.
149.A. Schmid, J. Low Temp. Phys. 49, 609 (1982).
http://dx.doi.org/10.1007/BF00681904
150.
150.P. Hedegård, unpublished.
151.
151.L.-D. Chang and S. Chakravarty, Phys. Rev. B 31, 154 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.154
152.
152.P. Hedegård and A. O. Caldeira, Physica Scripta 35, 609 (1987).
http://dx.doi.org/10.1088/0031-8949/35/5/001
153.
153.Y.-C. Chen, J. Stat. Phys. 47, 17 (1987).
http://dx.doi.org/10.1007/BF01009034
154.
154.S. Weinberg, The Quantum Theory of Fields (Cambridge University Press, 2005), Vol. 1.
155.
155.R. Hussein, A. Metelmann, P. Zedler, and T. Brandes, Phys. Rev. B 82, 165406 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.165406
156.
156.J.-S. Wang, Phys. Rev. Lett. 99, 160601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.160601
157.
157.J.-S. Wang, X. Ni, and J.-W. Jiang, Phys. Rev. B 80, 224302 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.224302
158.
158.M. Ceriotti, G. Bussi, and M. Parrinello, Phys. Rev. Lett. 103, 030603 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.030603
159.
159.H. Dammak, Y. Chalopin, M. Laroche, M. Hayoun, and J.-J. Greffet, Phys. Rev. Lett. 103, 190601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.190601
160.
160.M. Ceriotti and D. E. Manolopoulos, Phys. Rev. Lett. 109, 100604 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.100604
161.
161.O. N. Bedoya-Martinez, J.-L. Barrat, and D. Rodney, Phys. Rev. B 89, 014303 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.014303
162.
162.L. Kantorovich, Phys. Rev. B 78, 094304 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.094304
163.
163.L. Kantorovich and N. Rompotis, Phys. Rev. B 78, 094305 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.094305
164.
164.M. Brandbyge, P. Hedegård, T. F. Heinz, J. A. Misewich, and D. M. Newns, Phys. Rev. B 52, 6042 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.6042
165.
165.M. Brandbyge and P. Hedegård, Phys. Rev. Lett. 72, 2919 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.2919
166.
166.M. Head-Gordon and J. C. Tully, J. Chem. Phys. 103, 10137 (1995).
http://dx.doi.org/10.1063/1.469915
167.
167.J.-T. , T. Gunst, P. Hedegård, and M. Brandbyge, Beilstein J. Nanotechnol. 2, 814 (2011).
http://dx.doi.org/10.3762/bjnano.2.90
168.
168.J.-T. , R. B. Christensen, J.-S. Wang, P. Hedegård, and M. Brandbyge, Phys. Rev. Lett. 114, 096801 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.096801
169.
169.A. A. Dzhioev and D. S. Kosov, J. Chem. Phys. 135, 074701 (2011).
http://dx.doi.org/10.1063/1.3626521
170.
170.N. Bode, S. V. Kusminskiy, R. Egger, and F. von Oppen, Beilstein J. Nanotechnol. 3, 144 (2012).
http://dx.doi.org/10.3762/bjnano.3.15
171.
171.L. Stella, C. D. Lorenz, and L. Kantorovich, Phys. Rev. B 89, 134303 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.134303
172.
172.M. Ceriotti, D. E. Manolopoulos, and M. Parrinello, J. Chem. Phys. 134, 084104 (2011).
http://dx.doi.org/10.1063/1.3556661
173.
173.J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).
http://dx.doi.org/10.1088/0953-8984/14/11/302
174.
174.M. Brandbyge, J.-L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.165401
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4917017
Loading
/content/aip/journal/adva/5/5/10.1063/1.4917017
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4917017
2015-04-02
2016-09-27

Abstract

The topic of this review is the effects of electron-phonon interaction (EPI) on the transport properties of molecular nano-conductors. A nano-conductor connects to two electron leads and two phonon leads, possibly at different temperatures or chemical potentials. The EPI appears only in the nano-conductor. We focus on its effects on charge and energy transport. We introduce three approaches. For weak EPI, we use the nonequilibrium Green’s function method to treat it perturbatively. We derive the expressions for the charge and heat currents. For weak system-lead couplings, we use the quantum master equation approach. In both cases, we use a simple single level model to study the effects of EPI on the system’s thermoelectric transport properties. It is also interesting to look at the effect of currents on the dynamics of the phonon system. For this, we derive a semi-classical generalized Langevin equation to describe the nano-conductor’s atomic dynamics, taking the nonequilibrium electron system, as well as the rest of the atomic degrees of freedom as effective baths. We show simple applications of this approach to the problem of energy transfer between electrons and phonons.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4917017.html;jsessionid=FsPfQVaaXBS324qu7W9yPy1D.x-aip-live-06?itemId=/content/aip/journal/adva/5/5/10.1063/1.4917017&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4917017&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4917017'
Right1,Right2,Right3,