Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4918591
1.
1.A. Y. Cho, Appl. Phys. Lett. 19, 467 (1971).
http://dx.doi.org/10.1063/1.1653775
2.
2.L. Esake and L. L. Chang, Phys. Rev. Lett. 31, 2080 (1974).
3.
3.T. Yao, Appl. Phys. Lett. 51, 1798 (1987).
http://dx.doi.org/10.1063/1.98526
4.
4.G. Chen, A. Verma, and J. S. Smith, Appl. Phys. Lett. 67, 3554 (1995).
http://dx.doi.org/10.1063/1.114919
5.
5.S. M. Lee, D. G. Cahill, and R. Venkatasubramanian, Appl. Phys. Lett. 70, 2957 (1997).
http://dx.doi.org/10.1063/1.118755
6.
6.E. S. Landry, M. I. Hussein, and A. J. H. McGaughey, Phys. Rev. B 77, 184302 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.184302
7.
7.S. C. Huberman, J. M. Larkin, A. J. H. McGaughey, and C. H. Amon, Phys. Rev. B 88, 155311 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.155311
8.
8.E. S. Landry and A. J. H. McGaughey, Phys. Rev. B 79, 075316 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.075316
9.
9.K. Imamura, Y. Tanaka, N. Nishiguchi, S. Tamura, and H. J. Maris, J. Phys.: Condens. Matter 15, 8679 (2003).
http://dx.doi.org/10.1088/0953-8984/15/50/002
10.
10.K. Termentzidis, P. Chantrenne, and P. Keblinski, Phys. Rev. B 79, 214307 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.214307
11.
11.Y. Chen, D. Li, J. R. Lukes, Z. Ni, and M. Chen, Phys. Rev. B 72, 174302 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.174302
12.
12.T. Zhu and E. Ertekin, Phys. Rev. B 90, 195209 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.195209
13.
13.N. Yang, G. Zhang, and B. Li, Nano Lett. 8, 276 (2008).
http://dx.doi.org/10.1021/nl0725998
14.
14.I. Savic, D. Donadio, F. Gygi, and G. Galli, Appl. Phys. Lett. 102, 073113 (2013).
http://dx.doi.org/10.1063/1.4792748
15.
15.J. Garg, N. Bonini, and N. Marzari, Nano Lett. 11, 5135 (2011).
http://dx.doi.org/10.1021/nl202186y
16.
16.M. N. Luckyanova, J. Garg, K. Esfarjani, A. Jandi, M. T. Bulsara, A. J. Schmidt, A. J. Minnich, S. Chen, M. S. Dresselhaus, Z. Ren et al., Science 338, 936 (2012).
http://dx.doi.org/10.1126/science.1225549
17.
17.M. V. Simkin and G. D. Mahan, Phys. Rev. Lett. 84, 927 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.927
18.
18.J. Jiang, J. Wang, and B. Wang, Appl. Phys. Lett. 99, 043109 (2011).
http://dx.doi.org/10.1063/1.3619832
19.
19.J. Ravichandran, A. K. Yadav, R. Cheaito, P. B. Rossen, A. Soukiassian, S. J. Suresha, J. C. Duda, B. M. Foley, C.-H. Lee, Y. Zhu et al., Nat. Mater. 13, 168 (2014).
http://dx.doi.org/10.1038/nmat3826
20.
20.W. A. Little, Can. J. Phys. 37, 334 (1959).
http://dx.doi.org/10.1139/p59-037
21.
21.E. T. Swartz and R. O. Pohl, Rev. Mod. Phys. 61, 605 (1989).
http://dx.doi.org/10.1103/RevModPhys.61.605
22.
22.M. E. Lumpkin, W. M. Saslow, and W. M. Visscher, Phys. Rev. B 17, 4295 (1978).
http://dx.doi.org/10.1103/PhysRevB.17.4295
23.
23.D. A. Young and H. J. Maris, Phys. Rev. B 40, 3685 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.3685
24.
24.S. Pettersson and G. D. Mahan, Phys. Rev. B 42, 7386 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.7386
25.
25.H. Zhao and J. B. Freund, J. Appl. Phys. 97, 024903 (2005).
http://dx.doi.org/10.1063/1.1835565
26.
26.P. K. Schelling, S. R. Phillpot, and P. Keblinski, Appl. Phys. Lett. 80, 2484 (2003).
http://dx.doi.org/10.1063/1.1465106
27.
27.J. Wang and J.-S. Wang, J. Phys.: Condens. Matter 19, 236211 (2007).
http://dx.doi.org/10.1088/0953-8984/19/23/236211
28.
28.E. S. Landry and A. J. H. McGaughey, Phys. Rev. B 80, 165304 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.165304
29.
29.A. Maiti, G. D. Mahan, and S. T. Pantelides, Solid State Commun. 102, 517 (1997).
http://dx.doi.org/10.1016/S0038-1098(97)00049-5
30.
30.C. J. Twu and J. R. Ho, Phys. Rev. B 67, 205422 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.205422
31.
31.R. J. Stevens, L. V. Zhigilei, and P. M. Norris, Int. J. Heat Mass Transfer 50, 3977 (2007).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.01.040
32.
32.J. C. Duda, T. S. English, E. S. Piekos, W. A. Soffa, L. V. Zhigilei, and P. E. Hopkins, Phys. Rev. B 84, 193301 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.193301
33.
33.E. S. Landry and A. J. H. McGaughey, J. Appl. Phys. 107, 013521 (2010).
http://dx.doi.org/10.1063/1.3275506
34.
34.Z. Tian, K. Esfarjani, and G. Chen, Phys. Rev. B 89, 235307 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.235307
35.
35.H. Zhao and J. B. Freund, J. Appl. Phys. 105, 013515 (2009).
http://dx.doi.org/10.1063/1.3054383
36.
36.J.-S. Wang, J. Wang, and J. T. , Eur. Phys. J. B 62, 381 (2008).
http://dx.doi.org/10.1140/epjb/e2008-00195-8
37.
37.A. J. H. McGaughey, Ph.D. thesis,University of Michigan, Ann Arbor (2004).
38.
38.L. Hu, W. J. Evans, and P. Keblinski, J. Appl. Phys. 110, 113511 (2011).
http://dx.doi.org/10.1063/1.3660234
39.
39.P. K. Schelling, S. R. Phillpot, and P. Keblinski, Phys. Rev. B 65, 144306 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.144306
40.
40.S. Plimpton, J. Comp. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
41.
41.A. J. H. McGaughey and M. Kaviany, Phys. Rev. B 71, 184305 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.184305
42.
42.K. Sääskilahti, J. Oksanen, J. Tulkki, and S. Volz, Phys. Rev. B 90, 134312 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.134312
43.
43.R. Landauer, Philos. Mag. 21, 863 (1970).
http://dx.doi.org/10.1080/14786437008238472
44.
44.M. T. Dove, Introduction to Lattice Dynamics (Cambridge University Press, 2005).
45.
45. Disorder at the interface is introduced in this fashion: atoms within a thin film of Type 1 (Type 2) immediately adjacent to an interface have a probability p of being Type 2 (Type 1). No comparisons to the thermal circuit model are made for the disordered cases.
46.
46. The conventional unit cell lattice constants of LJ argon at 5, 10, and 15 K are 5.280 Å, 5.289 Å, and 5.303 Å. These values are interpolated from data presented in Ref. 37.
47.
47.K. Sääskilahti, J. Oksanen, J. Tulkki, and S. Volz, Phys. Rev. B 90, 134312 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.134312
48.
48.Y. Chalopin, N. Mingo, J. Diao, D. Srivastava, and S. Volz, Appl. Phys. Lett. 101, 221903 (2012).
http://dx.doi.org/10.1063/1.4766266
49.
49.Y. Chalopin and S. Volz, Appl. Phys. Lett. 103, 051602 (2014).
http://dx.doi.org/10.1063/1.4816738
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4918591
Loading
/content/aip/journal/adva/5/5/10.1063/1.4918591
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4918591
2015-04-14
2016-09-30

Abstract

We use molecular dynamics simulations and the lattice-based scattering boundary method to compute the thermal conductance of finite-length Lennard-Jones superlattice junctions confined by bulk crystalline leads. The superlattice junction thermal conductance depends on the properties of the leads. For junctions with a superlattice period of four atomic monolayers at temperatures between 5 and 20 K, those with mass-mismatched leads have a greater thermal conductance than those with mass-matched leads. We attribute this lead effect to interference between and the ballistic transport of emergent junction vibrational modes. The lead effect diminishes when the temperature is increased, when the superlattice period is increased, and when interfacial disorder is introduced, but is reversed in the harmonic limit.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4918591.html;jsessionid=a_uy9h1_kdlgWh5R0uEZQfGX.x-aip-live-03?itemId=/content/aip/journal/adva/5/5/10.1063/1.4918591&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4918591&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4918591'
Right1,Right2,Right3,