Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4919048
1.
1.E. S. Barr, American Journal of Physics 28, 4254 (1960).
http://dx.doi.org/10.1119/1.1934975
2.
2.W. Herschel, Philosophical Transactions of Royal Society of London 90, 284292 (1800).
http://dx.doi.org/10.1098/rstl.1800.0015
3.
3.W. Herschel, Philosophical Transactions of Royal Society of London 90, 293326 (1800).
http://dx.doi.org/10.1098/rstl.1800.0016
4.
4.W. Herschel, Philosophical Transactions of Royal Society of London 90, 437538 (1800).
http://dx.doi.org/10.1098/rstl.1800.0020
5.
5.M. Planck, Verhandlungen der Deutschen Physikalischen Gesellschaft 2, 202204 (1900).
6.
6.M. Planck, Verhandlungen der Deutschen Physikalischen Gesellschaft 2, 237245 (1900).
7.
7.M. Planck, The theory of heat radiation, 2nd ed. (P. Blakiston’s Son & Co., Philadelphia, PA, 1914).
8.
8.D. ter Haar, The old quantum theory, 1st ed. (Pergamon Press, Oxford, New York, 1967).
9.
9.D. Bohm, Quantum theory (Dover Publications, New York, 1989).
10.
10.H. Kragh, Physics World 13(12), 3135 (2000).
11.
11.H. B. Callen and T. A. Welton, Physical Review 83(1), 3440 (1951).
http://dx.doi.org/10.1103/PhysRev.83.34
12.
12.R. Kubo, Reports on Progress in Physics 29, 255284 (1966).
http://dx.doi.org/10.1088/0034-4885/29/1/306
13.
13.L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical physics, 3rd, rev. and enl. ed. (Pergamon Press, Oxford, 1980).
14.
14.W. Eckhardt, Physical Review A 29(4), 19912003 (1984).
http://dx.doi.org/10.1103/PhysRevA.29.1991
15.
15.S. M. Rytov, Theory of electric fluctuations and thermal radiation (Air Force Cambrige Research Center, Bedford, MA, 1953).
16.
16.S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of statistical radiophysics (Springer-Verlag, Berlin Heidelberg, 1989).
17.
17.A. G. Emslie, inAerodynamically Heated Structures, edited by P. E. Glaser (Prentice-Hall, Englewood Cliffs, NJ, 1962).
18.
18.J. B. Pendry, Journal of Physics-Condensed Matter 11(35), 66216633 (1999).
http://dx.doi.org/10.1088/0953-8984/11/35/301
19.
19.Z. M. Zhang, Nano/microscale heat transfer (McGraw-Hill, New York, NY, 2007).
20.
20.K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet, Surface Science Reports 57(3-4), 59112 (2005).
http://dx.doi.org/10.1016/j.surfrep.2004.12.002
21.
21.A. I. Volokitin and B. N. J. Persson, Reviews of Modern Physics 79(4), 12911329 (2007).
http://dx.doi.org/10.1103/RevModPhys.79.1291
22.
22.S. Basu, Z. M. Zhang, and C. J. Fu, International Journal of Energy Research 33(13), 12031232 (2009).
http://dx.doi.org/10.1002/er.1607
23.
23.I. A. Dorofeyev and E. A. Vinogradov, Physics Reports-Review Section of Physics Letters 504(2-4), 75143 (2011).
24.
24.A. C. Jones, B. T. O’Callahan, H. U. Yang, and M. B. Raschke, Progress in Surface Science 88(4), 349392 (2013).
http://dx.doi.org/10.1016/j.progsurf.2013.07.001
25.
25.D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. H. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, Applied Physics Reviews 1(1) (2014).
http://dx.doi.org/10.1063/1.4832615
26.
26.Y. M. Xuan, Photonics and Nanostructures-Fundamentals and Applications 12(2), 93113 (2014).
http://dx.doi.org/10.1016/j.photonics.2014.02.003
27.
27.A. I. Volokitin and B. N. J. Persson, Physics-Uspekhi 50(9), 879906 (2007).
http://dx.doi.org/10.1070/PU2007v050n09ABEH006192
28.
28.C. Girard, C. Joachim, and S. Gauthier, Reports on Progress in Physics 63(6), 893938 (2000).
http://dx.doi.org/10.1088/0034-4885/63/6/202
29.
29.R. Carminati and J. J. Greffet, Physical Review Letters 82(8), 16601663 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.1660
30.
30.J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. P. Mainguy, and Y. Chen, Nature 416(6876), 6164 (2002).
http://dx.doi.org/10.1038/416061a
31.
31.F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, Physical Review B 69(15) (2004).
http://dx.doi.org/10.1103/PhysRevB.69.155412
32.
32.M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, Optics Letters 30(19), 26232625 (2005).
http://dx.doi.org/10.1364/OL.30.002623
33.
33.M. Laroche, R. Carminati, and J. J. Greffet, Physical Review Letters 96(12) (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.123903
34.
34.J. J. Greffet and C. Henkel, Contemporary Physics 48(4), 183194 (2007).
http://dx.doi.org/10.1080/00107510701690380
35.
35.C. Henkel, K. Joulain, R. Carminati, and J. J. Greffet, Optics Communications 186(1-3), 5767 (2000).
http://dx.doi.org/10.1016/S0030-4018(00)01048-8
36.
36.A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, Physical Review Letters 85(7), 15481551 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1548
37.
37.Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, Nature 444(7120), 740743 (2006).
http://dx.doi.org/10.1038/nature05265
38.
38.A. Kittel, U. F. Wischnath, J. Welker, O. Huth, F. Ruting, and S. A. Biehs, Applied Physics Letters 93(19) (2008).
http://dx.doi.org/10.1063/1.3025140
39.
39.U. F. Wischnath, J. Welker, M. Munzel, and A. Kittel, Review of Scientific Instruments 79(7) (2008).
http://dx.doi.org/10.1063/1.2955764
40.
40.M. H. Kryder, E. C. Gage, T. W. Mcdaniel, W. A. Challener, R. E. Rottmayer, G. P. Ju, Y. T. Hsia, and M. F. Erden, Proceedings of the IEEE 96(11), 18101835 (2008).
http://dx.doi.org/10.1109/JPROC.2008.2004315
41.
41.W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Y. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, Nature Photonics 3(4), 220224 (2009).
http://dx.doi.org/10.1038/nphoton.2009.26
42.
42.B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone, J. A. Katine, J. L. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. R. Albrecht, and B. D. Terris, Nature Photonics 4(7), 484488 (2010).
http://dx.doi.org/10.1038/nphoton.2010.90
43.
43.P. J. van Zwol, K. Joulain, P. Ben-Abdallah, and J. Chevrier, Physical Review B 84(16) (2011).
http://dx.doi.org/10.1103/PhysRevB.84.161413
44.
44.P. J. van Zwol, K. Joulain, P. Ben-Abdallah, J. J. Greffet, and J. Chevrier, Physical Review B 83(20) (2011).
http://dx.doi.org/10.1103/PhysRevB.83.201404
45.
45.V. B. Svetovoy, P. J. van Zwol, and J. Chevrier, Physical Review B 85(15) (2012).
http://dx.doi.org/10.1103/PhysRevB.85.155418
46.
46.L. J. Cui, Y. Huang, J. Wang, and K. Y. Zhu, Applied Physics Letters 102(5) (2013).
47.
47.S. Vassant, I. M. Doyen, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, Applied Physics Letters 102(8) (2013).
http://dx.doi.org/10.1063/1.4793650
48.
48.Y. Huang, S. V. Boriskina, and G. Chen, Applied Physics Letters 105(24) (2014).
49.
49.R. Incardone, T. Emig, and M. Kruger, Europhysics Letter 106(4) (2014).
http://dx.doi.org/10.1209/0295-5075/106/41001
50.
50.T. Inoue, M. De Zoysa, T. Asano, and S. Noda, Nature Materials 13(10), 928931 (2014).
http://dx.doi.org/10.1038/nmat4043
51.
51.M. Nikbakht, Journal of Applied Physics 116(9) (2014).
http://dx.doi.org/10.1063/1.4894622
52.
52.C. R. Otey, W. T. Lau, and S. H. Fan, Physical Review Letters 104(15), 154301 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.154301
53.
53.S. Basu and M. Francoeur, Applied Physics Letters 98(11) (2011).
54.
54.H. Iizuka and S. H. Fan, Journal of Applied Physics 112(2) (2012).
http://dx.doi.org/10.1063/1.4737465
55.
55.P. Ben-Abdallah and S. A. Biehs, Applied Physics Letters 103(19) (2013).
http://dx.doi.org/10.1063/1.4829618
56.
56.J. G. Huang, Q. Li, Z. H. Zheng, and Y. M. Xuan, International Journal of Heat and Mass Transfer 67, 575580 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.08.057
57.
57.L. P. Wang and Z. M. Zhang, Nanoscale and Microscale Thermophysical Engineering 17(4), 337348 (2013).
http://dx.doi.org/10.1080/15567265.2013.776154
58.
58.L. X. Zhu, C. R. Otey, and S. H. Fan, Physical Review B 88(18) (2013).
59.
59.Z. Chen, C. Wong, S. Lubner, S. Yee, J. Miller, W. Jang, C. Hardin, A. Fong, J. E. Garay, and C. Dames, Nature Communications 5 (2014).
60.
60.H. Iizuka and S. H. Fan, Journal of Quantitative Spectroscopy & Radiative Transfer 148, 156164 (2014).
http://dx.doi.org/10.1016/j.jqsrt.2014.07.007
61.
61.E. Nefzaoui, J. Drevillon, Y. Ezzahri, and K. Joulain, Applied Optics 53(16), 34793485 (2014).
http://dx.doi.org/10.1364/AO.53.003479
62.
62.R. Messina, M. Antezza, and P. Ben-Abdallah, Physical Review Letters 109(24) (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.244302
63.
63.P. Ben-Abdallah and S. A. Biehs, Physical Review Letters 112(4), 044301 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.044301
64.
64.M. Elzouka and S. Ndao, Applied Physics Letters 105(24) (2014).
http://dx.doi.org/10.1063/1.4904828
65.
65.V. Kubytskyi, S. A. Biehs, and P. Ben-Abdallah, Physical Review Letters 113(7) (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.074301
66.
66.R. S. DiMatteo, P. Greiff, S. L. Finberg, K. A. Young-Waithe, H. K. H. Choy, M. M. Masaki, and C. G. Fonstad, Applied Physics Letters 79(12), 18941896 (2001).
http://dx.doi.org/10.1063/1.1400762
67.
67.A. Narayanaswamy and G. Chen, Applied Physics Letters 82(20), 35443546 (2003).
http://dx.doi.org/10.1063/1.1575936
68.
68.M. Laroche, R. Carminati, and J. J. Greffet, Journal of Applied Physics 100(6) (2006).
http://dx.doi.org/10.1063/1.2234560
69.
69.K. Park, S. Basu, W. P. King, and Z. M. Zhang, Journal of Quantitative Spectroscopy & Radiative Transfer 109(2), 305316 (2008).
http://dx.doi.org/10.1016/j.jqsrt.2007.08.022
70.
70.U. Dillner, Journal of Electronic Materials 39(9), 16451649 (2010).
http://dx.doi.org/10.1007/s11664-010-1243-z
71.
71.M. Francoeur, R. Vaillon, and M. P. Mengüç, IEE Transactions on Energy Conversion 26(2), 686698 (2011).
http://dx.doi.org/10.1109/TEC.2011.2118212
72.
72.R. Messina and P. Ben-Abdallah, Scientific Reports 3 (2013).
http://dx.doi.org/10.1038/srep01383
73.
73.B. Zhao, L. P. Wang, Y. Shuai, and Z. M. Zhang, International Journal of Heat and Mass Transfer 67, 637645 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.08.047
74.
74.Y. Guo, S. Molesky, H. Hu, C. L. Cortes, and Z. Jacob, Applied Physics Letters 105(7) (2014).
75.
75.A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, Nature Nanotechnology 9(2), 126130 (2014).
http://dx.doi.org/10.1038/nnano.2013.286
76.
76.V. B. Svetovoy and G. Palasantzas, Physical Review Applied 2(3) (2014).
http://dx.doi.org/10.1103/PhysRevApplied.2.034006
77.
77.M. D. Whale and E. G. Cravalho, IEEE Transactions on Energy Conversion 17(1), 130142 (2002).
http://dx.doi.org/10.1109/60.986450
78.
78.S. Basu, Y. B. Chen, and Z. M. Zhang, International Journal of Energy Research 31(6-7), 689716 (2007).
http://dx.doi.org/10.1002/er.1286
79.
79.R. G. Yang, A. Narayanaswamy, and G. Chen, Journal of Computational and Theoretical Nanoscience 2(1), 7587 (2005).
80.
80.J. Fang, H. Frederich, and L. Pilon, Journal of Heat Transfer-Transactions of the ASME 132(9) (2010).
http://dx.doi.org/10.1115/1.4001634
81.
81.J. W. Schwede, I. Bargatin, D. C. Riley, B. E. Hardin, S. J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R. T. Howe, Z. X. Shen, and N. A. Melosh, Nature Materials 9(9), 762767 (2010).
http://dx.doi.org/10.1038/nmat2814
82.
82.J. H. Lee, I. Bargatin, N. A. Melosh, and R. T. Howe, Applied Physics Letters 100(17) (2012).
83.
83.M. F. Modest, Radiative heat transfer, 3rd ed. (Academic Press, Oxford, UK, 2013).
84.
84.R. Siegel and J. R. Howell, Thermal radiation heat transfer, 4th ed. (Taylor & Francis, New York, 2002).
85.
85.D. Bijl, Philosophical Magazine 43(347), 13421344 (1952).
http://dx.doi.org/10.1080/14786441208520268
86.
86.D. Dalvit, P. Milonni, D. Roberts, and F. da Rosa, Casimir Physics (Springer-Verlag, Berlin, Heidelberg, 2011).
87.
87.E. G. Cravalho, C. L. Tien, and R. P. Caren, Journal of Heat Transfer 89(4), 351358 (1967).
http://dx.doi.org/10.1115/1.3614396
88.
88.A. Olivei, Revue de Physique Appliquee 3(3), 225230 (1968).
http://dx.doi.org/10.1051/rphysap:0196800303022500
89.
89.R. F. Boehm and C. L. Tien, Mechanical Engineering 92(4), 405411 (1970).
90.
90.D. Polder and M. A. van Hove, Physical Review B 4(10), 33033314 (1971).
http://dx.doi.org/10.1103/PhysRevB.4.3303
91.
91.R. P. Caren, Journal of Heat Transfer 94(3), 289294 (1972).
http://dx.doi.org/10.1115/1.3449934
92.
92.R. P. Caren, Journal of Heat Transfer 94(3), 295299 (1972).
http://dx.doi.org/10.1115/1.3449935
93.
93.R. P. Caren, International Journal of Heat and Mass Transfer 17(7), 755765 (1974).
http://dx.doi.org/10.1016/0017-9310(74)90170-7
94.
94.M. L. Levin, V. G. Polevoi, and S. M. Rytov, Soviet Physics, JETP 52(6), 10541063 (1980).
95.
95.J. J. Loomis and H. J. Maris, Physical Review B 50(24), 1851718524 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.18517
96.
96.E. G. Cravalho, G. A. Domoto, and C. L. Tien, inAIAA 3rd Thermophysics Conference (Los Angeles, CA, 1968).
97.
97.C. M. Hargreaves, Physics Letters A 30(9), 491492 (1969).
http://dx.doi.org/10.1016/0375-9601(69)90264-3
98.
98.G. A. Domoto, R. F. Boehm, and C. L. Tien, Journal of Heat Transfer 92(3), 412416 (1970).
http://dx.doi.org/10.1115/1.3449677
99.
99.C. M. Hargreaves, Philips Research Reports 5, 180 (1973).
100.
100.S. S. Kutateladze, N. A. Rubtsov, and Y. A. Baltsevich, Soviet Physics Doklady 23(8), 577578 (1978).
101.
101.Y. A. Baltsevich and N. A. Rubtsov, Heat Transfer-Soviet Research 12, 117133 (1980).
102.
102.R. Messina and M. Antezza, Physical Review A 84(4) (2011).
http://dx.doi.org/10.1103/PhysRevA.84.042102
103.
103.M. Kruger, G. Bimonte, T. Emig, and M. Kardar, Physical Review B 86(11) (2012).
104.
104.A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson, Physical Review B 88(5) (2013).
105.
105.A. Narayanaswamy and Y. Zheng, Journal of Quantitative Spectroscopy & Radiative Transfer 132, 1221 (2014).
http://dx.doi.org/10.1016/j.jqsrt.2013.01.002
106.
106.C. R. Otey, L. X. Zhu, S. Sandhu, and S. H. Fan, Journal of Quantitative Spectroscopy & Radiative Transfer 132, 311 (2014).
http://dx.doi.org/10.1016/j.jqsrt.2013.04.017
107.
107.B. V. Budaev and D. B. Bogy, Zeitschrift Fur Angewandte Mathematik Und Physik 62(6), 11431158 (2011).
http://dx.doi.org/10.1007/s00033-011-0137-0
108.
108.B. V. Budaev and D. B. Bogy, Applied Physics a-Materials Science & Processing 103(4), 971975 (2011).
109.
109.B. V. Budaev and D. B. Bogy, Applied Physics Letters 104(6) (2014).
http://dx.doi.org/10.1063/1.4865404
110.
110.J. D. Jackson, Classical electrodynamics, 3rd ed. (Wiley, New York, 1999).
111.
111.J. A. Kong, Electromagnetic wave theory (EMW Publishing, Cambridge, MA, 2008).
112.
112.K. Joulain, J. Drevillon, and P. Ben-Abdallah, Physical Review B 81(16) (2010).
http://dx.doi.org/10.1103/PhysRevB.81.165119
113.
113.Z. H. Zheng and Y. M. Xuan, International Journal of Heat and Mass Transfer 54(5-6), 11011110 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.11.012
114.
114.C. T. Tai, Dyadic green functions in electromagnetic theory, 2nd ed. (IEEE Press, Piscataway, NJ, 1994).
115.
115.J. E. Sipe, Journal of the Optical Society of America B-Optical Physics 4(4), 481489 (1987).
http://dx.doi.org/10.1364/JOSAB.4.000481
116.
116.S. A. Biehs, E. Rousseau, and J. J. Greffet, Physical Review Letters 105(23) (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.234301
117.
117.P. Ben-Abdallah, K. Joulain, and A. Pryamikov, Applied Physics Letters 96(14) (2010).
http://dx.doi.org/10.1063/1.3385156
118.
118.A. Narayanaswamy and G. Chen, Physical Review B 70(12) (2004).
http://dx.doi.org/10.1103/PhysRevB.70.125101
119.
119.A. Narayanaswamy and G. Chen, Journal of Quantitative Spectroscopy & Radiative Transfer 93(1-3), 175183 (2005).
http://dx.doi.org/10.1016/j.jqsrt.2004.08.020
120.
120.A. Pryamikov, K. Joulain, P. Ben-Abdallah, and J. Drevillon, Journal of Quantitative Spectroscopy & Radiative Transfer 112(8), 13141322 (2011).
http://dx.doi.org/10.1016/j.jqsrt.2011.01.008
121.
121.S. A. Biehs, P. Ben-Abdallah, F. da Rosa, K. Joulain, and J. J. Greffet, Optics Express 19(19), A1088A1103 (2011).
http://dx.doi.org/10.1364/OE.19.0A1088
122.
122.I. S. Nefedov and C. R. Simovski, Physical Review B 84(19) (2011).
123.
123.Y. Bai, Y. Y. Jiang, and L. H. Liu, Journal of Physics D-Applied Physics 47(44) (2014).
124.
124.X. L. Liu, R. Z. Zhang, and Z. M. Zhang, International Journal of Heat and Mass Transfer 73, 389398 (2014).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.02.021
125.
125.L. J. Cui, Y. Huang, and J. Wang, Journal of Applied Physics 112(8) (2012).
126.
126.M. Francoeur, S. Basu, and S. J. Petersen, Optics Express 19(20), 1877418788 (2011).
http://dx.doi.org/10.1364/OE.19.018774
127.
127.A. I. Volokitin and B. N. J. Persson, Physical Review B 63(20) (2001).
http://dx.doi.org/10.1103/PhysRevB.63.205404
128.
128.M. Francoeur and M. P. Menguc, Journal of Quantitative Spectroscopy & Radiative Transfer 109(2), 280293 (2008).
http://dx.doi.org/10.1016/j.jqsrt.2007.08.017
129.
129.S. Basu and L. P. Wang, Applied Physics Letters 102(5) (2013).
130.
130.S. A. Dyakov, J. Dai, M. Yan, and M. Qiu, Physical Review B 90(4) (2014).
http://dx.doi.org/10.1103/PhysRevB.90.045414
131.
131.A. I. Volokitin and B. N. J. Persson, Physical Review B 83(24) (2011).
http://dx.doi.org/10.1103/PhysRevB.83.241407
132.
132.O. Ilic, M. Jablan, J. D. Joannopoulos, I. Celanovic, H. Buljan, and M. Soljacic, Physical Review B 85(15) (2012).
http://dx.doi.org/10.1103/PhysRevB.85.155422
133.
133.M. Lim, S. S. Lee, and B. J. Lee, Optics Express 21(19), 2217322185 (2013).
http://dx.doi.org/10.1364/OE.21.022173
134.
134.D. Drosdoff, A. D. Phan, and L. M. Woods, Advanced Optical Materials 2(11), 10381042 (2014).
http://dx.doi.org/10.1002/adom.201400275
135.
135.S. A. Biehs, F. S. S. Rosa, and P. Ben-Abdallah, Applied Physics Letters 98(24) (2011).
http://dx.doi.org/10.1063/1.3596707
136.
136.S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, Physical Review Letters 109(10) (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.104301
137.
137.Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, Applied Physics Letters 101(13) (2012).
138.
138.S. A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, Applied Physics Letters 102(13) (2013).
http://dx.doi.org/10.1063/1.4800233
139.
139.Y. Guo and Z. B. Jacob, Optics Express 21(12), 1501415019 (2013).
http://dx.doi.org/10.1364/OE.21.015014
140.
140.X. L. Liu, R. Z. Zhang, and Z. M. Zhang, Applied Physics Letters 103(21) (2013).
141.
141.Y. Guo and Z. Jacob, Journal of Applied Physics 115(23) (2014).
142.
142.O. D. Miller, S. G. Johnson, and A. W. Rodriguez, Physical Review Letters 112(15) (2014).
143.
143.I. S. Nefedov and L. A. Melnikov, Applied Physics Letters 105(16) (2014).
http://dx.doi.org/10.1063/1.4899126
144.
144.S. Basu and Z. M. Zhang, Journal of Applied Physics 105(9) (2009).
145.
145.X. J. Wang, S. Basu, and Z. M. Zhang, Journal of Physics D-Applied Physics 42(24) (2009).
146.
146.P. Ben-Abdallah and K. Joulain, Physical Review B 82(12) (2010).
http://dx.doi.org/10.1103/PhysRevB.82.121419
147.
147.S. Basu and M. Francoeur, Applied Physics Letters 98(24) (2011).
148.
148.Y. Zhao, G. H. Tang, and Z. Y. Li, International Communications in Heat and Mass Transfer 39(7), 918922 (2012).
http://dx.doi.org/10.1016/j.icheatmasstransfer.2012.05.008
149.
149.E. Nefzaoui, Y. Ezzahri, J. Drevillon, and K. Joulain, Eur. Phys. J. Appl. Phys. 63, 30902 (2013).
http://dx.doi.org/10.1051/epjap/2013130162
150.
150.C. Simovski, S. Maslovski, I. Nefedov, and S. Tretyakov, Optics Express 21(12), 1498815013 (2013).
http://dx.doi.org/10.1364/OE.21.014988
151.
151.M. Francoeur, M. P. Menguc, and R. Vaillon, Journal of Quantitative Spectroscopy & Radiative Transfer 110(18), 20022018 (2009).
http://dx.doi.org/10.1016/j.jqsrt.2009.05.010
152.
152.M. Francoeur, M. P. Mengüç, and R. Vaillon, Physical Review B 84(7) (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075436
153.
153.Z. H. Zheng and Y. M. Xuan, Chinese Science Bulletin 56(22), 23122319 (2011).
http://dx.doi.org/10.1007/s11434-011-4586-9
154.
154.J. P. Mulet, K. Joulain, R. Carminati, and J. J. Greffet, Microscale Thermophysical Engineering 6(3), 209222 (2002).
http://dx.doi.org/10.1080/10893950290053321
155.
155.S. A. Biehs and J. J. Greffet, Physical Review B 82(24) (2010).
http://dx.doi.org/10.1103/PhysRevB.82.245410
156.
156.C. J. Fu and Z. M. Zhang, International Journal of Heat and Mass Transfer 49(9-10), 17031718 (2006).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.09.037
157.
157.E. Rousseau, M. Laroche, and J. J. Greffet, Applied Physics Letters 95(23) (2009).
http://dx.doi.org/10.1063/1.3271681
158.
158.E. Rousseau, M. Laroche, and J. J. Greffet, Journal of Quantitative Spectroscopy & Radiative Transfer 111(7-8), 10051014 (2010).
http://dx.doi.org/10.1016/j.jqsrt.2010.01.023
159.
159.B. A. Liu, J. W. Shi, K. Liew, and S. Shen, Optics Communications 314, 5765 (2014).
http://dx.doi.org/10.1016/j.optcom.2013.10.074
160.
160.P. O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J. J. Greffet, Physical Review B 77(3), 9 (2008).
161.
161.Y. Zheng and A. Narayanaswamy, Physical Review A 89(2) (2014).
162.
162.S. A. Biehs, European Physical Journal B 58(4), 423431 (2007).
http://dx.doi.org/10.1140/epjb/e2007-00254-8
163.
163.S. A. Biehs, D. Reddig, and M. Holthaus, European Physical Journal B 55(3), 237251 (2007).
http://dx.doi.org/10.1140/epjb/e2007-00053-3
164.
164.M. Francoeur, M. P. Menguc, and R. Vaillon, Applied Physics Letters 93(8), 089901 (2008).
http://dx.doi.org/10.1063/1.2976783
165.
165.P. Ben-Abdallah, K. Joulain, J. Drevillon, and G. Domingues, Journal of Applied Physics 106(4) (2009).
http://dx.doi.org/10.1063/1.3204481
166.
166.C. J. Fu and W. C. Tan, Journal of Quantitative Spectroscopy & Radiative Transfer 110(12), 10271036 (2009).
http://dx.doi.org/10.1016/j.jqsrt.2009.02.007
167.
167.M. Francoeur, M. P. Menguc, and R. Vaillon, Journal of Physics D-Applied Physics 43(7) (2010).
http://dx.doi.org/10.1088/0022-3727/43/7/075501
168.
168.M. Francoeur, M. P. Menguc, and R. Vaillon, Applied Physics a-Materials Science & Processing 103(3), 547550 (2011).
169.
169.L. P. Wang, S. Basu, and Z. M. Zhang, Journal of Heat Transfer-Transactions of the ASME 133(7) (2011).
170.
170.L. Y. Carrillo and Y. Bayazitoglu, Journal of Quantitative Spectroscopy & Radiative Transfer 112(3), 412419 (2011).
http://dx.doi.org/10.1016/j.jqsrt.2010.10.011
171.
171.L. Y. Carrillo and Y. Bayazitoglu, Nanoscale and Microscale Thermophysical Engineering 15(3), 195208 (2011).
http://dx.doi.org/10.1080/15567265.2011.597493
172.
172.J. P. Mulet, K. Joulain, R. Carminati, and J. J. Greffet, Applied Physics Letters 78(19), 29312933 (2001).
http://dx.doi.org/10.1063/1.1370118
173.
173.P. O. Chapuis, J. J. Greffet, K. Joulain, and S. Volz, Nanotechnology 17(12), 29782981 (2006).
http://dx.doi.org/10.1088/0957-4484/17/12/026
174.
174.S. A. Biehs, O. Huth, and F. Ruting, Physical Review B 78(8) (2008).
http://dx.doi.org/10.1103/PhysRevB.78.085414
175.
175.P. O. Chapuis, M. Laroche, S. Volz, and J. J. Greffet, Physical Review B 77(12) (2008).
176.
176.S. A. Biehs and J. J. Greffet, Physical Review B 81(24) (2010).
http://dx.doi.org/10.1103/PhysRevB.81.245414
177.
177.A. Narayanaswamy and G. Chen, Physical Review B 77(7) (2008).
http://dx.doi.org/10.1103/PhysRevB.77.075125
178.
178.L. Y. Carrillo and Y. Bayazitoglu, Journal of Thermophysics and Heat Transfer 24(2), 309315 (2010).
http://dx.doi.org/10.2514/1.45620
179.
179.K. Sasihithlu and A. Narayanaswamy, Optics Express 19(14), A772A785 (2011).
http://dx.doi.org/10.1364/OE.19.00A772
180.
180.K. Sasihithlu and A. Narayanaswamy, Physical Review B 83(16) (2011).
http://dx.doi.org/10.1103/PhysRevB.83.161406
181.
181.Z. M. Zhang and B. J. Lee, Optics Express 14(21), 99639970 (2006).
http://dx.doi.org/10.1364/OE.14.009963
182.
182.B. J. Lee, K. Park, and Z. M. Zhang, Applied Physics Letters 91(15) (2007).
183.
183.S. Basu, L. P. Wang, and Z. M. Zhang, Journal of Quantitative Spectroscopy & Radiative Transfer 112(7), 11491155 (2011).
http://dx.doi.org/10.1016/j.jqsrt.2010.08.027
184.
184.S. Basu and Z. M. Zhang, Applied Physics Letters 95(13), 133104 (2009).
http://dx.doi.org/10.1063/1.3238315
185.
185.S. Basu and M. Francoeur, Applied Physics Letters 99(14) (2011).
http://dx.doi.org/10.1063/1.3646466
186.
186.S. Lang, M. Tschikin, S. A. Biehs, A. Y. Petrov, and M. Eich, Applied Physics Letters 104(12) (2014).
http://dx.doi.org/10.1063/1.4869490
187.
187.K. Joulain, R. Carminati, J. P. Mulet, and J. J. Greffet, Physical Review B 68(24) (2003).
http://dx.doi.org/10.1103/PhysRevB.68.245405
188.
188.P. Ben-Abdallah, K. Joulain, J. Drevillon, and G. Domingues, Applied Physics Letters 94(15) (2009).
http://dx.doi.org/10.1063/1.3122139
189.
189.M. Francoeur, M. P. Menguc, and R. Vaillon, Journal of Applied Physics 107(3) (2010).
http://dx.doi.org/10.1063/1.3294606
190.
190.A. Narayanaswamy and G. Chen, Journal of Quantitative Spectroscopy & Radiative Transfer 111(12-13), 18771884 (2010).
http://dx.doi.org/10.1016/j.jqsrt.2009.12.008
191.
191.F. Ruting, S. A. Biehs, O. Huth, and M. Holthaus, Physical Review B 82(11) (2010).
http://dx.doi.org/10.1103/PhysRevB.82.115443
192.
192.Z. M. Zhang and S. Basu, International Journal of Heat and Mass Transfer 50(3-4), 702712 (2007).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.07.009
193.
193.I. Dorofeyev, Physica Scripta 84(5) (2011).
http://dx.doi.org/10.1088/0031-8949/84/05/055003
194.
194.A. Narayanaswamy and Y. Zheng, Physical Review B 88(7) (2013).
http://dx.doi.org/10.1103/PhysRevB.88.075412
195.
195.I. Latella, A. Perez-Madrid, L. C. Lapas, and J. M. Rubi, Journal of Applied Physics 115(12) (2014).
http://dx.doi.org/10.1063/1.4869744
196.
196.B. V. Derjaguin, I. I. Abrikosova, and E. M. Lifshitz, Q. Rev. Chem. Soc. 10(3), 295329 (1956).
http://dx.doi.org/10.1039/qr9561000295
197.
197.C. Otey and S. H. Fan, Physical Review B 84(24) (2011).
http://dx.doi.org/10.1103/PhysRevB.84.245431
198.
198.B. Zhao and Z. M. Zhang, Journal of Quantitative Spectroscopy & Radiative Transfer 135, 8189 (2014).
http://dx.doi.org/10.1016/j.jqsrt.2013.11.016
199.
199.S. G. Johnson, inCasimir Physics, edited by D. Dalvit, P. Milonni, D. Roberts, and F. da Rosa (Springer-Verlag, Berlin Heidelberg, 2011).
200.
200.D. M. Whittaker and I. S. Culshaw, Physical Review B 60(4), 26102618 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.2610
201.
201.G. Bimonte, Physical Review A 80(4) (2009).
http://dx.doi.org/10.1103/PhysRevA.80.042102
202.
202.S. J. Rahi, T. Emig, N. Graham, R. L. Jaffe, and M. Kardar, Physical Review D 80(8) (2009).
http://dx.doi.org/10.1103/PhysRevD.80.085021
203.
203.M. Kruger, T. Emig, and M. Kardar, Physical Review Letters 106(21) (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.210404
204.
204.R. Messina and M. Antezza, Epl 95(6) (2011).
http://dx.doi.org/10.1209/0295-5075/95/61002
205.
205.A. P. McCauley, M. T. H. Reid, M. Kruger, and S. G. Johnson, Physical Review B 85(16) (2012).
http://dx.doi.org/10.1103/PhysRevB.85.165104
206.
206.R. Guerout, J. Lussange, F. S. S. Rosa, J. P. Hugonin, D. A. R. Dalvit, J. J. Greffet, A. Lambrecht, and S. Reynaud, Physical Review B 85(18) (2012).
http://dx.doi.org/10.1103/PhysRevB.85.180301
207.
207.J. Lussange, R. Guerout, F. S. S. Rosa, J. J. Greffet, A. Lambrecht, and S. Reynaud, Physical Review B 86(8) (2012).
http://dx.doi.org/10.1103/PhysRevB.86.085432
208.
208.A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson, Physical Review B 86(22) (2012).
209.
209.A. W. Rodriguez, M. T. H. Reid, J. Varela, J. D. Joannopoulos, F. Capasso, and S. G. Johnson, Physical Review Letters 110(1), 014301 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.014301
210.
210.C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, Physical Review Letters 93(21) (2004).
211.
211.A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljacic, and S. G. Johnson, Physical Review Letters 107(11), 114302 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.114302
212.
212.A. Datas, D. Hirashima, and K. Hanamura, Journal of Thermal Science and Technology 8(1), 91105 (2013).
http://dx.doi.org/10.1299/jtst.8.91
213.
213.A. Didari and M. P. Menguc, Journal of Quantitative Spectroscopy & Radiative Transfer 146, 214226 (2014).
http://dx.doi.org/10.1016/j.jqsrt.2014.04.002
214.
214.S. B. Wen, Journal of Heat Transfer-Transactions of the ASME 132(7) (2010).
http://dx.doi.org/10.1115/1.4000995
215.
215.B. A. Liu and S. Shen, Physical Review B 87(11) (2013).
216.
216.S. Edalatpour and M. Francoeur, Journal of Quantitative Spectroscopy & Radiative Transfer 133, 364373 (2014).
http://dx.doi.org/10.1016/j.jqsrt.2013.08.021
217.
217.E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J. J. Greffet, Nature Photonics 3(9), 514517 (2009).
http://dx.doi.org/10.1038/nphoton.2009.144
218.
218.S. Shen, A. Narayanaswamy, and G. Chen, Nano Letters 9(8), 29092913 (2009).
http://dx.doi.org/10.1021/nl901208v
219.
219.R. F. Harrington, Journal of Electromagnetic Waves and Applications 3(1), 115 (1989).
http://dx.doi.org/10.1163/156939389X00016
220.
220.S. R. Rengarajan and Y. Rahmat-Samii, IEEE Antennas and Propagation Magazine 42(4), 122128 (2000).
http://dx.doi.org/10.1109/74.868058
221.
221.S. M. Rao, D. R. Wilton, and A. W. Glisson, IEEE Transactions on Antennas and Propagation 30(3), 409418 (1982).
http://dx.doi.org/10.1109/TAP.1982.1142818
222.
223.
223.B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V. Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas, P. Reddy, and E. Meyhofer, Nature Nanotechnology 10(3), 253258 (2015).
http://dx.doi.org/10.1038/nnano.2015.6
224.
224.A. Taflove and S. C. Hagness, Computational electrodynamics : the finite-difference time-domain method, 3rd ed. (Artech House, Boston, 2005).
225.
225.T. Y. Hou, W. Luo, B. Rozovskii, and H. M. Zhou, Journal of Computational Physics 216(2), 687706 (2006).
http://dx.doi.org/10.1016/j.jcp.2006.01.008
226.
226.B. T. Draine and P. J. Flatau, Journal of the Optical Society of America a-Optics Image Science and Vision 11(4), 14911499 (1994).
http://dx.doi.org/10.1364/JOSAA.11.001491
227.
227.N. A. Roberts and D. G. Walker, International Journal of Thermal Sciences 50(5), 648662 (2011).
http://dx.doi.org/10.1016/j.ijthermalsci.2010.12.004
228.
228.N. B. Li, J. Ren, L. Wang, G. Zhang, P. Hanggi, and B. W. Li, Reviews of Modern Physics 84(3), 10451066 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.1045
229.
229.C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Science 314(5802), 11211124 (2006).
http://dx.doi.org/10.1126/science.1132898
230.
230.M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, Science 318(5857), 17501753 (2007).
http://dx.doi.org/10.1126/science.1150124
231.
231.L. X. Zhu, C. R. Otey, and S. H. Fan, Applied Physics Letters 100(4) (2012).
232.
232.R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, Physical Review Letters 107(1) (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.014301
233.
233.L. Hu, A. Narayanaswamy, X. Y. Chen, and G. Chen, Applied Physics Letters 92(13) (2008).
234.
234.T. Kralik, P. Hanzelka, V. Musilova, A. Srnka, and M. Zobac, Review of Scientific Instruments 82(5) (2011).
http://dx.doi.org/10.1063/1.3585985
235.
235.T. Kralik, P. Hanzelka, M. Zobac, V. Musilova, T. Fort, and M. Horak, Physical Review Letters 109(22) (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.224302
236.
236.C. Feng, Z. A. Tang, and J. Yu, Chinese Physics Letters 29(3) (2012).
237.
237.C. Feng, Z. A. Tang, J. Yu, and C. Y. Sun, Sensors 13(2), 19982010 (2013).
http://dx.doi.org/10.3390/s130201998
238.
238.R. St-Gelais, B. Guha, L. X. Zhu, S. H. Fan, and M. Lipson, Nano Letters 14(12), 69716975 (2014).
http://dx.doi.org/10.1021/nl503236k
239.
239.C. C. Williams and H. K. Wickramasinghe, Applied Physics Letters 49(23), 15871589 (1986).
http://dx.doi.org/10.1063/1.97288
240.
240.K. Dransfeld and J. B. Xu, Journal of Microscopy-Oxford 152, 3542 (1988).
http://dx.doi.org/10.1111/j.1365-2818.1988.tb01359.x
241.
241.J. B. Xu, K. Lauger, K. Dransfeld, and I. H. Wilson, Review of Scientific Instruments 65(7), 22622266 (1994).
http://dx.doi.org/10.1063/1.1145225
242.
242.J. B. Xu, K. Lauger, R. Moller, K. Dransfeld, and I. H. Wilson, Journal of Applied Physics 76(11), 72097216 (1994).
http://dx.doi.org/10.1063/1.358001
243.
243.W. Muller-Hirsch, A. Kraft, M. T. Hirsch, J. Parisi, and A. Kittel, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 17(4), 12051210 (1999).
244.
244.A. Kittel, W. Muller-Hirsch, J. Parisi, S. A. Biehs, D. Reddig, and M. Holthaus, Physical Review Letters 95(22), 224301 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.224301
245.
245.L. Worbes, D. Hellmann, and A. Kittel, Physical Review Letters 110(13) (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.134302
246.
246.B. Guha, C. Otey, C. B. Poitras, S. H. Fan, and M. Lipson, Nano Letters 12(9), 45464550 (2012).
http://dx.doi.org/10.1021/nl301708e
247.
247.A. Babuty, K. Joulain, P. O. Chapuis, J. J. Greffet, and Y. De Wilde, Physical Review Letters 110(14) (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.146103
248.
248.A. C. Jones and M. B. Raschke, Nano Letters 12(3), 14751481 (2012).
http://dx.doi.org/10.1021/nl204201g
249.
249.B. T. O’Callahan, W. E. Lewis, A. C. Jones, and M. B. Raschke, Physical Review B 89(24) (2014).
250.
250.K. Joulain, P. Ben-Abdallah, P. O. Chapuis, Y. De Wilde, A. Babuty, and C. Henkel, Journal of Quantitative Spectroscopy & Radiative Transfer 136, 115 (2014).
http://dx.doi.org/10.1016/j.jqsrt.2013.12.006
251.
251.F. Peragut, J. B. Brubach, P. Roy, and Y. De Wilde, Applied Physics Letters 104(25) (2014).
http://dx.doi.org/10.1063/1.4885416
252.
252.L. M. Zhang, G. O. Andreev, Z. Fei, A. S. McLeod, G. Dominguez, M. Thiemens, A. H. Castro-Neto, D. N. Basov, and M. M. Fogler, Physical Review B 85(7) (2012).
253.
253.A. Narayanaswamy, S. Shen, and G. Chen, Physical Review B 78(11), 115303 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.115303
254.
254.S. Shen, A. Mavrokefalos, P. Sambegoro, and G. Chen, Applied Physics Letters 100(23) (2012).
255.
255.P. J. van Zwol, L. Ranno, and J. Chevrier, Physical Review Letters 108(23), 234301 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.234301
256.
256.P. J. van Zwol, S. Thiele, C. Berger, W. A. de Heer, and J. Chevrier, Physical Review Letters 109(26) (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.264301
257.
257.J. W. Shi, P. F. Li, B. A. Liu, and S. Shen, Applied Physics Letters 102(18) (2013).
258.
258.M. Francoeur, Nature Nanotechnology 10(3), 206208 (2015).
http://dx.doi.org/10.1038/nnano.2015.34
259.
259.S. Sadat, E. Meyhofer, and P. Reddy, Review of Scientific Instruments 83(8), 084902 (2012).
http://dx.doi.org/10.1063/1.4744963
260.
260.S. Sadat, E. Meyhofer, and P. Reddy, Applied Physics Letters 102(16), 163110 (2013).
http://dx.doi.org/10.1063/1.4802239
261.
261.Y. Ganjeh, B. Song, K. Pagadala, K. Kim, S. Sadat, W. Jeong, K. Kurabayashi, E. Meyhofer, and P. Reddy, Review of Scientific Instruments 83(10), 105101 (2012).
http://dx.doi.org/10.1063/1.4754643
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4919048
Loading
/content/aip/journal/adva/5/5/10.1063/1.4919048
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4919048
2015-04-21
2016-12-03

Abstract

Radiative thermal transport via the fluctuating electromagnetic near-field has recently attracted increasing attention due to its fundamental importance and its impact on a range of applications from data storage to thermal management and energy conversion. After a brief historical account of radiative thermal transport, we summarize the basics of fluctuational electrodynamics, a theoretical framework for the study of radiative heat transfer in terms of thermally excited propagating and evanescent electromagnetic waves. Various approaches to modeling near-field thermal transport are briefly discussed, together with key results and proposals for manipulation and utilization of radiative heat flow. Subsequently, we review the experimental advances in the characterization of both near-field heat flow and energy density. We conclude with remarks on the opportunities and challenges for future explorations of radiative heat transfer at the nanoscale.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4919048.html;jsessionid=yBDOvvr_WWIX7cjqgVc-hPGi.x-aip-live-02?itemId=/content/aip/journal/adva/5/5/10.1063/1.4919048&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4919048&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4919048'
Right1,Right2,Right3,