Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4919584
1.
1.T. Freeth, Y. Bitsakis, X. Moussas, J. H. Seiradakis, A. Tselikas, E. Mankou, M. Zafeiropulou, R. Hadland, D. Bate, A. Ramsey, M. Allen, A. Crawley, P. Hockley, T. Malzbender, D. Gelb, W. Ambrisco, and M. G. Edmunds, Nature 444, 7119 (2006).
http://dx.doi.org/10.1038/nature05357
2.
2.B. Pascal, Oeuvres de Blaise Pascal (La Haye, Chez Detune, 1779).
3.
3.D. De and S. Price, IEEE Micro. 4, 1 (1984).
http://dx.doi.org/10.1109/MM.1984.291272
4.
4.N. Sharkey, “A programmable robot from 60 AD 2611,” New Sci. 2611 (2007).
5.
5.G. Brett, Speculum 29, 3 (1954).
http://dx.doi.org/10.2307/2846790
6.
6.D. Swade, Charles Babbage’s Difference Engine No. 2 Technical Description (Science Museum Papers in the History of Technology No 5, London: National Museum of Science and Industry, 1996).
7.
7.J. Fuegi and J. Francis, Ann. Hist. Comput. 25, 4 (2003).
http://dx.doi.org/10.1109/MAHC.2003.1253887
8.
8.M. L. Roukes, Electron Devices Meeting, IEDM Technical Digest. 539 (2004).
9.
9.M. Maldovan, Nature 503, 209 (2013).
http://dx.doi.org/10.1038/nature12608
10.
10. We will neglect the applications of phonons to problems like time-keeping through quartz resonator mechanical clocks and the use of surface acoustic waves in thin film resonators for signal filtering and convolution. While these are undoubtedly useful for computing, they are somewhat ancillary. In particular, they fall outside of the Turing machine framework for a computer.
11.
11.S. R. Sklan and J. C. Grossman, New J. Phys. 16, 053029 (2014).
http://dx.doi.org/10.1088/1367-2630/16/5/053029
12.
12.A. A. Maznev, A. G. Every, and O. B. Wright, Wave Motion 50, 776 (2013).
http://dx.doi.org/10.1016/j.wavemoti.2013.02.006
13.
13.N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Rev. Mod. Phys. 84, 1045 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.1045
14.
14.N. A. Roberts and D. G. Walker, Int. J. Therm. Sci. 50, 648 (2011).
http://dx.doi.org/10.1016/j.ijthermalsci.2010.12.004
15.
15.C. Starr, J. Appl. Phys. 7, 15 (1935).
16.
16.A. M. Clausing, Int. J. Heat Mass Tran. 9, 791 (1966).
http://dx.doi.org/10.1016/0017-9310(66)90006-8
17.
17.M. H. Barzelay, K. N. Tong, and G. F. Holloway, Joints Technical Report 3295 (NACA, 1955).
18.
18.D. V. Lewis and H. C. Perkins, Int. J. Heat Mass Tran. 11, 1371 (1968).
http://dx.doi.org/10.1016/0017-9310(68)90182-8
19.
19.M. Sen and D. Go, J. Heat Transf. 132, 124502 (2010).
http://dx.doi.org/10.1115/1.4002286
20.
20.C. Dames, J. Heat Transf 131, 061301 (2009).
http://dx.doi.org/10.1115/1.3089552
21.
21.W. Kobayashi, Y. Teraoka, and I. Terasaki, Appl. Phys. Lett. 95, 171905 (2009).
http://dx.doi.org/10.1063/1.3253712
22.
22.T. Sun, J. Wang, and W. Kang, EPL-Europhys. Lett. 105, 16004 (2014).
http://dx.doi.org/10.1209/0295-5075/105/16004
23.
23.M. Romero-Bastida and J. M. Arizmendi-Carvajal, J. Phys. A: Math. Theor. 46, 115006 (2013).
http://dx.doi.org/10.1088/1751-8113/46/11/115006
24.
24.J. Lee, V. Varshney, A. K. Roy, J. B. Ferguson, and B. L. Farmer, Nano Lett. 12, 3491 (2012).
http://dx.doi.org/10.1021/nl301006y
25.
25.Y. Wang, A. Vallabhaneni, J. Hu, B. Qiu, Y. P. Chen, and X. Ruan, Nano Lett. 14, 592 (2014).
http://dx.doi.org/10.1021/nl403773f
26.
26.C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Science 314, 1121 (2006).
http://dx.doi.org/10.1126/science.1132898
27.
27.A. A. Balandina and D. L. Nika, Mater. Today 15, 6 (2012).
http://dx.doi.org/10.1016/S1369-7021(12)70002-0
28.
28.M. Alaghemandi, F. Leroy, E. Algaer, M. Bohm, and F. Muller-Plathe, Nanotechnology 21, 075704 (2010).
http://dx.doi.org/10.1088/0957-4484/21/7/075704
29.
29.E. Pereira, Phys. Rev. E 83, 031106 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.031106
30.
30.M. Terraneo, M. Peyrard, and G. Casati, Phys. Rev. Lett. 88, 094302 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.094302
31.
31.B. Li, L. Wang, and G. Casati, Phys. Rev. Lett. 93, 184301 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.184301
32.
32.B. Hu, L. Yang, and Y. Zhang, Phys. Rev. Lett. 97, 124302 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.124302
33.
33.J. Lan, L. Wang, and B. Li, Int. J. Mod. Phys. B 21, 4013 (2007).
http://dx.doi.org/10.1142/S0217979207045116
34.
34.T. Komatsu and N. Ito, Phys. Rev. E 81, 010103(R) (2010).
http://dx.doi.org/10.1103/PhysRevE.81.010103
35.
35.W. Kobayashi, D. Sawaki, T. Omura, T. Katsufuji, Y. Moritomo, and I. Terasaki, Appl. Phys. Express 5, 027302 (2012).
http://dx.doi.org/10.1143/APEX.5.027302
36.
36.M. Peyrard, EPL-Europhys. Lett. 76, 1 (2006).
http://dx.doi.org/10.1209/epl/i2006-10223-5
37.
37.K. I. Garcia-Garcia and J. Alvarez-Quintana, Int. J. Therm. Sci. 81, 76 (2014).
http://dx.doi.org/10.1016/j.ijthermalsci.2014.03.004
38.
38.B. Li, J. H. Lan, and L. Wang, Phys. Rev. Lett. 95, 104302 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.104302
39.
39.S. Zhu, T. Dreyer, M. Liebler, R. Riedlinger, G. M. Preminger, and P. Zhong, Ultrasound Med. Biol. 30, 5 (2004).
http://dx.doi.org/10.1016/j.ultrasmedbio.2004.03.008
40.
40.R. Krishnan, S. Shirota, Y. Tanaka, and N. Nishiguchi, Solid State Commun. 144, 194 (2007).
http://dx.doi.org/10.1016/j.ssc.2007.08.036
41.
41.S. Danworaphong, T. A. Kelf, O. Matsuda, M. Tomoda, Y. Tanaka, N. Nishiguchi, O. B. Wright, Y. Nishijima, K. Ueno, S. Juodkazis, and H. Misawa, Appl. Phys. Lett. 99, 201910 (2011).
http://dx.doi.org/10.1063/1.3662930
42.
42.S. Alagoz, Appl. Acoust. 76, 402 (2014).
http://dx.doi.org/10.1016/j.apacoust.2013.09.010
43.
43.M. Schmotz, J. Maier, E. Scheer, and P. Leiderer, New J. Phys. 13, 113027 (2011).
http://dx.doi.org/10.1088/1367-2630/13/11/113027
44.
44.H.-X. Sun, S.-Y. Zhang, and X.-J. Shui, Appl. Phys. Lett. 100, 103507 (2012).
http://dx.doi.org/10.1063/1.3693374
45.
45.H. Jia, M. Ke, C. Li, C. Qiu, and Z. Liu, Appl. Phys. Lett. 102, 153508 (2013).
http://dx.doi.org/10.1063/1.4802254
46.
46.H.-X. Sun and S.-Y. Zhang, Appl. Phys. Lett. 102, 113511 (2013).
http://dx.doi.org/10.1063/1.4798277
47.
47.X. Zhu, X. Zou, B. Liang, and J. Cheng, J. Appl. Phys. 108, 124909 (2010).
http://dx.doi.org/10.1063/1.3520491
48.
48. Depending upon whether the background medium is a solid or a gas/liquid, phononic crystals will often be divided between phononic and sonic crystals. To emphasize the similarity between these cases, I refer to both as phononic crystals in this paper.
49.
49.R.-Q. Li, B. Liang, Y. Li, W.-W. Kan, X.-Y. Zou, and J.-C. Cheng, Appl. Phys. Lett. 101, 263502 (2012).
http://dx.doi.org/10.1063/1.4773481
50.
50.J.-J. Chen, X. Han, and G.-Y. Li, J. Appl. Phys. 113, 184506 (2013).
http://dx.doi.org/10.1063/1.4804323
51.
51.J. Lu, C. Qiu, M. Ke, and Z. Liu, arXiv:1411.1851 (2014).
52.
52.B. Yuan, B. Liang, J.-C. Tao, X.-Y. Zou, and J.-C. Cheng, Appl. Phys. Lett. 101, 043503 (2012).
http://dx.doi.org/10.1063/1.4739081
53.
53.A. Cicek, O. A. Kaya, and B. Ulug, Appl. Phys. Lett. 100, 111905 (2012).
http://dx.doi.org/10.1063/1.3694020
54.
54.B. Liang, B. Yuan, and J.-C. Cheng, Phys. Rev. Lett. 103, 104301 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.104301
55.
55.B. Liang, X.-Y. Zou, B. Yuan, and J.-C. Cheng, Appl. Phys. Lett. 96, 233511 (2010).
http://dx.doi.org/10.1063/1.3447361
56.
56.B. Liang, X. S. Guo, J. Tu, D. Zhang, and J. C. Cheng, Nat. Mater. 9, 989 (2010).
http://dx.doi.org/10.1038/nmat2881
57.
57.X. Guo, Z. Lin, J. Tu, B. Liang, J. Cheng, and D. Zhang, J. Acoust. Soc. Am. 133, 2 (2013).
58.
58.C. Ma, R. G. Parker, and B. B. Yellen, J. Sound Vib. 332, 4876 (2013).
http://dx.doi.org/10.1016/j.jsv.2013.04.013
59.
59.S. Lepri and G. Casati, Phys. Rev. Lett. 106, 164101 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.164101
60.
60.T. F. Assunção, E. M. Nascimento, and M. L. Lyra, Phys. Rev. E 90, 022901 (2014).
http://dx.doi.org/10.1103/PhysRevE.90.022901
61.
61.N. Li and J. Ren, arXiv:1402.5576 (2014).
62.
62.N. Boechler, G. Theocharis, and C. Daraio, Nat. Mater. 10, 665 (2011).
http://dx.doi.org/10.1038/nmat3072
63.
63.A. Merkel, V. Tournat, and V. Gusev, Phys. Rev. E 90, 023206 (2014).
http://dx.doi.org/10.1103/PhysRevE.90.023206
64.
64.S. Lepri and A. Pikovsky, Chaos 24, 043119 (2014).
http://dx.doi.org/10.1063/1.4899205
65.
65.R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alù, Science 343, 516 (2014).
http://dx.doi.org/10.1126/science.1246957
66.
66.J. D’Ambroise, P. G. Kevrekidis, and S. Lepri, J. Phys. A: Math. Theor. 45, 444012 (2012).
http://dx.doi.org/10.1088/1751-8113/45/44/444012
67.
67.X. Zhu, H. Ramezani, C. Shi, J. Zhu, and X. Zhang, Phys. Rev. X 4, 031042 (2014).
68.
68.M. B. Zanjani, A. R. Davoyan, A. M. Mahmoud, N. Engheta, and J. R. Lukes, Appl. Phys. Lett. 104, 081905 (2014).
http://dx.doi.org/10.1063/1.4866590
69.
69.B.-I. Popa and S. A. Cummer, Nat. Commun. 5, 3398 (2014).
http://dx.doi.org/10.1038/ncomms4398
70.
70.B. Li, L. Wang, and G. Casati, Appl. Phys. Lett. 88, 143501 (2006).
http://dx.doi.org/10.1063/1.2191730
71.
71.W. C. Lo, L. Wang, and B. Li, J. Phys. Soc. Japan 77, 054402 (2008).
http://dx.doi.org/10.1143/JPSJ.77.054402
72.
72.T. S. Komatsu and N. Ito, Phys. Rev. E 83, 012104 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.012104
73.
73.S. Alagoz and B. B. Alagoz, J. Acoust. Soc. Am. 133, 6 (2013).
http://dx.doi.org/10.1121/1.4807306
74.
74.D. Hatanaka, I. Mahboob, K. Onomitsu, and H. Yamaguchi, Appl. Phys. Lett. 102, 213102 (2013).
http://dx.doi.org/10.1063/1.4807838
75.
75.D. Hatanaka, I. Mahboob, K. Onomitsu, and H. Yamaguchi, Nat. Nanotechnol. 9, 520 (2014).
http://dx.doi.org/10.1038/nnano.2014.107
76.
76.C. Vanhille and C. Campos-Pozuelo, Ultrason. Sonochem. 21, 50 (2014).
http://dx.doi.org/10.1016/j.ultsonch.2013.06.001
77.
77.B. Liang, W.-W. Kan, X.-Y. Zou, L.-L. Yin, and J.-C. Cheng, Appl. Phys. Lett. 105, 083510 (2014).
http://dx.doi.org/10.1063/1.4894293
78.
78.F. Li, P. Anzel, J. Yang, P. G. Kevrekidis, and C. Daraio, Nat. Commun. 5, 5311 (2014).
http://dx.doi.org/10.1038/ncomms6311
79.
79.F. Li, C. Chong, J. Yang, P. G. Kevrekidis, and C. Daraio, arXiv: 1408.6121 (2014).
80.
80.V. F. Nesterenko, C. Daraio, E. B. Herbold, and S. Jin, Phys. Rev. Lett. 95, 158702 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.158702
81.
81.X.-F. Li, X. Ni, L. Feng, M.-H. Lu, C. He, and Y.-F. Chen, Phys. Rev. Lett. 106, 084301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.084301
82.
82.K. G. S. H. Gunawardana, K. Mullen, J. Hu, Y. P. Chen, and X. Ruan, Phys. Rev. B 85, 245417 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.245417
83.
83.M. G. Menezes, A. Saraiva-Souza, J. Del Nero, and R. B. Capaz, Phys. Rev. B 81, 012302 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.012302
84.
84.H. Jeong, Y. D. Jho, and C. J. Stanton, arXiv: 1408.4731 (2014).
85.
85.J. Zhu, K. Hippalgaonkar, S. Shen, K. Wang, J. Wu, X. Yin, A. Majumdar, and X. Zhang, arXiv:1307.4069 (2013).
86.
86.P. Ben-Abdallah and S.-A. Biehs, Phys. Rev. Lett. 112, 044301 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.044301
87.
87.S. R. Sklan and J. C. Grossman (in preparation).
88.
88.M. V. Wilkes, J. ACM 15, 1 (1968).
http://dx.doi.org/10.1145/321439.321440
89.
89.L. Wang and B. Li, Phys. Rev. Lett. 101, 267203 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.267203
90.
90.R. Xie, C. T. Bui, B. Varghese, Q. Zhang, C. H. Sow, B. Li, and J. T. L. Thong, Adv. Funct. Mater. 21, 1602 (2011).
http://dx.doi.org/10.1002/adfm.201002436
91.
91.A. Sharma, V. V. Tyagi, C. R. Chen, and D. Buddhi, Renew. Sust. Energ. Rev. 13, 318 (2009).
http://dx.doi.org/10.1016/j.rser.2007.10.005
92.
92.J. M. Khodadadi, L. Fan, and H. Babaei, Renew. Sust. Energ. Rev. 24, 418 (2013).
http://dx.doi.org/10.1016/j.rser.2013.03.031
93.
93.M. Fasano, M. B. Bigdeli, M. R. V. Sereshk, E. Chiavazzo, and P. Asinari, Renew. Sust. Energ. Rev. 41, 1028 (2015).
http://dx.doi.org/10.1016/j.rser.2014.08.087
94.
94.T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C.-L. Cheung, and C. M. Lieber, Science 289, 94 (2000).
http://dx.doi.org/10.1126/science.289.5476.94
95.
95.A. N. Cleland and M. R. Geller, Phys. Rev. Lett. 93, 070501 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.070501
96.
96.P. Rabl, S. J. Kolkowitz, F. H. L. Koppens, J. G. E. Harris, P. Zoller, and M. D. Lukin, Nat. Phys. 6, 602 (2010).
http://dx.doi.org/10.1038/nphys1679
97.
97.R. L. Badzey, G. Zolfagharkhani, A. Gaidarzhy, and P. Mohanty, Appl. Phys. Lett. 85, 3587 (2004).
http://dx.doi.org/10.1063/1.1808507
98.
98.W. J. Venstra, H. J. R. Westra, and H. S. J. van der Zant, Appl. Phys. Lett. 97, 193107 (2010).
http://dx.doi.org/10.1063/1.3511343
99.
99.N. A. Khovanova and J. Windelen, Appl. Phys. Lett. 101, 024104 (2012).
http://dx.doi.org/10.1063/1.4736566
100.
100.I. Mahboob and H. Yamaguchi, Nat. Nanotechnol. 3, 275 (2008).
http://dx.doi.org/10.1038/nnano.2008.84
101.
101.I. Mahboob, M. Mounaix, K. Nishiguchi, A. Fujiwara, and H. Yamaguchi, Sci. Reports 4, 4448 (2014).
102.
102.Z. M. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
http://dx.doi.org/10.1126/science.1149066
103.
103.A. H. Safavi-Naeini and O. Painter, New J. Phys. 13, 013017 (2011).
http://dx.doi.org/10.1088/1367-2630/13/1/013017
104.
104.D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter, New J. Phys. 13, 023003 (2011).
http://dx.doi.org/10.1088/1367-2630/13/2/023003
105.
105.V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, Phys. Rev. Lett. 107, 133601 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.133601
106.
106.E. Verhagen, S. Deleglise, S. Weiss, A. Schliesser, and T. J. Kippenberg, Nature 482, 63 (2012).
http://dx.doi.org/10.1038/nature10787
107.
107.T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert, Nature 495, 210 (2013).
http://dx.doi.org/10.1038/nature11915
108.
108.S. A. McGee, D. Meiser, C. A. Regal, K. W. Lehnert, and M. J. Holland, Phys. Rev. A 87, 053818 (2013).
http://dx.doi.org/10.1103/PhysRevA.87.053818
109.
109.J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, Nat. Commun. 3, 1196 (2012).
http://dx.doi.org/10.1038/ncomms2201
110.
110.C. Galland, N. Sangouard, N. Piro, N. Gisin, and T. J. Kippenberg, Phys. Rev. Lett. 112, 143602 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.143602
111.
111.P. Mohanty, D. A. Harrington, K. L. Ekinci, Y. T. Yang, M. J. Murphy, and M. L. Roukes, Phys. Rev. B 66, 085416 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.085416
112.
112.X. Sun, X. Zhang, and H. X. Tang, Appl. Phys. Lett. 100, 173116 (2012).
http://dx.doi.org/10.1063/1.4709416
113.
113.M. Goryachev, D. L. Creedon, E. N. Ivanov, S. Galliou, R. Bourquin, and M. E. Tobar, Appl. Phys. Lett. 100, 243504 (2012).
http://dx.doi.org/10.1063/1.4729292
114.
114.S. Chakram, Y. S. Patil, L. Chang, and M. Vengalattore, Phys. Rev. Lett. 112, 127201 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.127201
115.
115.M. Goryachev, M. E. Tobar, and S. Galliou, IEEE Joint UFFC, EFTF and PFM Symposium (2013).
116.
116.J. M. Owens and G. F. Sallee, Proc. IEEE 159, 308 (1971).
http://dx.doi.org/10.1109/PROC.1971.8154
117.
117.S. C. Masmanidis, R. B. Karabalin, I. De Vlaminck, G. Borghs, M. R. Freeman, and M. L. Roukes, Science 317, 780 (2007).
http://dx.doi.org/10.1126/science.1144793
118.
118.S. Bringuier, N. Swinteck, J. O. Vasseur, J.-F. Robillard, K. Runge, K. Muralidharan, and P. A. Deymier, J. Acoust. Soc. Am. 130, 4 (2011).
http://dx.doi.org/10.1121/1.3631627
119.
119.L. Wang and B. Li, Phys. Rev. Lett. 99, 177208 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.177208
120.
120.I. Mahboob, E. Flurin, K. Nishiguchi, A. Fujiwara, and H. Yamaguchi, Nat. Commun. 2, 198 (2011).
http://dx.doi.org/10.1038/ncomms1201
121.
121.S. R. Sklan and J. C. Grossman, arXiv:1301.2807 (2013).
122.
122.K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, Phys. Rev. Lett. 109, 013603 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.013603
123.
123.M. Schmidt, M. Ludwig, and F. Marquardt, New J. Phys. 14, 125005 (2012).
http://dx.doi.org/10.1088/1367-2630/14/12/125005
124.
124.S. Rips and M. J. Hartmann, Phys. Rev. Lett. 110, 120503 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.120503
125.
125.T. Faust, J. Rieger, M. J. Seitner, J. P. Kotthaus, and E. M. Weig, Nat. Phys. 9, 485 (2013).
http://dx.doi.org/10.1038/nphys2666
126.
126.H. Okamoto, A. Gourgout, C.-Y. Chang, K. Onomitsu, I. Mahboob, E. Y. Chang, and H. Yamaguchi, Nat. Phys. 9, 480 (2013).
http://dx.doi.org/10.1038/nphys2665
127.
127.Ö. O. Soykal, R. Ruskov, and C. Tahan, Phys. Rev. Lett. 107, 235502 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.235502
128.
128.R. Ruskov and C. Tahan, Phys. Rev. B 88, 064308 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.064308
129.
129.J. H. Cho, L. W. Weiss, C. D. Richards, D. F. Bahr, and R. F. Richards, J. Micromech. Microeng. 17, S217 (2007).
http://dx.doi.org/10.1088/0960-1317/17/9/S02
130.
130.R. Martínez-Sala, C. Rubio, L. M. García-Raffi, J. V. Sánchez-Pérez, E. A. Sánchez-Pérez, and J. Llinares, J. Sound Vib. 291, 100 (2006).
http://dx.doi.org/10.1016/j.jsv.2005.05.030
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4919584
Loading
/content/aip/journal/adva/5/5/10.1063/1.4919584
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4919584
2015-04-28
2016-12-11

Abstract

Phonons, the quanta of mechanical vibration, are important to the transport of heat and sound in solid materials. Recent advances in the fundamental control of phonons (phononics) have brought into prominence the potential role of phonons in information processing. In this review, the many directions of realizing phononic computing and information processing are examined. Given the relative similarity of vibrational transport at different length scales, the related fields of acoustic, phononic, and thermal information processing are all included, as are quantum and classical computer implementations. Connections are made between the fundamental questions in phonon transport and phononic control and the device level approach to diodes, transistors, memory, and logic. 

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4919584.html;jsessionid=6kj5HrAyx2Xxvzo9ZuLc5sGm.x-aip-live-06?itemId=/content/aip/journal/adva/5/5/10.1063/1.4919584&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4919584&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4919584'
Right1,Right2,Right3,