Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4919786
1.
1.S. B. Riffat and X. Ma, Appl. Therm. Eng. 23, 913 (2003).
http://dx.doi.org/10.1016/S1359-4311(03)00012-7
2.
2.P. Wang, A. Bar-Cohen, B. Yang, G. L. Solbrekken, and A. Shakouri, J. Appl. Phys. 100, 014501 (2006).
http://dx.doi.org/10.1063/1.2211328
3.
3.A. Majumdar, Science 303, 777 (2004).
http://dx.doi.org/10.1126/science.1093164
4.
4.M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).
http://dx.doi.org/10.1002/adma.200600527
5.
5.A. Boukai, K. Xu, and J. R. Heath, Adv. Mater. 18, 864 (2006).
http://dx.doi.org/10.1002/adma.200502194
6.
6.G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).
http://dx.doi.org/10.1038/nmat2090
7.
7.R. G. Lange and W. P. Carroll, Energy Conv. Manag. 49, 393 (2008).
http://dx.doi.org/10.1016/j.enconman.2007.10.028
8.
8.G. L. Bennett, in4th International Energy Conversion Engineering Conference and Exhibit, San Diego, California, AIAA, 2006 (2006), p. 4191.
9.
9.R. C. O’Brien, R. M. Ambrosi, N. P. Bannister, S. D. Howe, and H. V. Atkinson, J. Nucl. Mater. 377, 506 (2008).
http://dx.doi.org/10.1016/j.jnucmat.2008.04.009
10.
10.H. R. Williams, R. M. Ambrosi, N. P. Bannister, P. Samara-Ratna, and J. Sykes, Int. J. Energy Res. 36, 1192 (2012).
http://dx.doi.org/10.1002/er.1864
11.
11.J. P. Heremans, M. S. Dresselhaus, L. E. Bell, and D. T. Morelli, Nat. Nanotechnol. 8, 471 (2013).
http://dx.doi.org/10.1038/nnano.2013.129
12.
12.A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).
http://dx.doi.org/10.1038/nature06381
13.
13.Y. Lin, X. Sun, and M. S. Dresselhaus, Phys. Rev. B 62, 4610 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.4610
14.
14.K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V. P. Dravid, and M. G. Kanatzidis, Nat. Chem. 3, 160 (2011).
http://dx.doi.org/10.1038/nchem.955
15.
15.E. Verrelli and D. Tsoukals, inRadiation Hardness of Flash and Nanoparticle Memories, edited by I. Stievano (InTech, Rijeka, 2011), Vol. 11.
16.
16.G. R. Hopkinson, C. J. Dale, and P. W. Marshall, IEEE Trans. Nucl. Sci. 43, 614 (1996).
http://dx.doi.org/10.1109/23.490905
17.
17.E. Miyata, H. Kouno, D. Kamiyama, T. Kamazuka, M. Mihara, M. Fukuda, K. Matsuta, H. Tsunemi, T. Minamisono, H. Tomida, and K. Miyaguchi, Jpn. J. Appl. Phys. 42, 4564 (2003).
http://dx.doi.org/10.1143/JJAP.42.4564
18.
18.G. P. Summers and R. J. Walters, IEEE Trans. Nucl. Sci. 40, 1372 (1993).
http://dx.doi.org/10.1109/23.273529
19.
19.J. R. Srour, C. J. Marshall, and P. W. Marshall, IEEE Trans. Nucl. Sci. 50, 653 (2003).
http://dx.doi.org/10.1109/TNS.2003.813197
20.
20.G. C. Messenger, Radiation and its Effects on Devices and Systems (1991), p. 35.
21.
21.A. L. Barry, A. J. Houdayer, P. F. Hinrichsen, W. G. Letourneau, and J. Vincent, IEEE Trans. Nucl. Sci. 42, 2104 (1995).
http://dx.doi.org/10.1109/23.489259
22.
22.X. Sun, D. Reusser, H. Dautet, and J. B. Abshire, IEEE Trans. Electron Devices 44, 2160 (1997).
http://dx.doi.org/10.1109/16.644630
23.
23.J. W. Roh, D. H. Ko, J. Kang, M. K. Lee, J. H. Lee, C. W. Lee, K. H. Lee, J. S. Noh, and W. Lee, Phys. Status Solidi A 210, 1438 (2013).
http://dx.doi.org/10.1002/pssa.201228734
24.
24.L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.12727
25.
25.L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.16631
26.
26.W. Shim, J. Ham, K. Lee, W. Y. Jeung, M. Johnson, and W. Lee, Nano Lett. 9, 18 (2009).
http://dx.doi.org/10.1021/nl8016829
27.
27.J. Kim, S. Lee, Y. M. Brovman, P. Kim, and W. Lee, Nanoscale, doi:10.1039/C4NR06412G (2015).
http://dx.doi.org/10.1039/C4NR06412G
28.
28.J. Kim, S. Lee, Y. M. Brovman, M. Kim, P. Kim, and W. Lee, Appl. Phys. Lett. 104, 043105 (2014).
http://dx.doi.org/10.1063/1.4863421
29.
29.J. Kim, D. Kim, T. Chang, and W. Lee, Appl. Phys. Lett. 105, 123107 (2014).
http://dx.doi.org/10.1063/1.4896543
30.
30.D. Schiferl and C. S. Barrett, J. Appl. Crystallogr. 2, 30 (1969).
http://dx.doi.org/10.1107/S0021889869006443
31.
31.A. C. Damask and G. J. Dienes, Point Defects in Metals, Professional Edition (Gordon and Breach Science Publisher, New York, 1963), pp. 5869.
32.
32.G. H. Kinchin and R. S. Pease, Rep. Prog. Phys. 18, 1 (1955).
http://dx.doi.org/10.1088/0034-4885/18/1/301
33.
33.W. Shim, J. Ham, J. Kim, and W. Lee, Appl. Phys. Lett. 95, 232107 (2009).
http://dx.doi.org/10.1063/1.3267143
34.
34.P. Bois and F. Beuneu, J. Phys. F : Met. Phys. 17, 2365 (1987).
http://dx.doi.org/10.1088/0305-4608/17/12/009
35.
35.N. Matsuno, J. Phys. Soc. Jpn. 42, 1675 (1977).
http://dx.doi.org/10.1143/JPSJ.42.1675
36.
36.Z. Zhang, X. Sun, M. S. Dresselhaus, J. Y. Ying, and J. Heremans, Phys. Rev. B 61, 4850 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.4850
37.
37.Y. M. Zuev, W. Chang, and P. Kim, Phys. Rev. Lett. 102, 096807 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.096807
38.
38.M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin, and T. Koga, Phys. Solid State 41, 679 (1999).
http://dx.doi.org/10.1134/1.1130849
39.
39.J. Heremans and C. M. Thrush, Phys. Rev. B 59, 12579 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.12579
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4919786
Loading
/content/aip/journal/adva/5/5/10.1063/1.4919786
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4919786
2015-05-01
2016-12-08

Abstract

The effects of proton irradiation on the thermoelectric properties of Bi nanowires (Bi-NWs) were investigated. Single crystalline Bi-NWs were grown by the on-film formation of nanowires method. The devices based on individual Bi-NWs were irradiated with protons at different energies. The total number of displaced atoms was estimated using the Kinchin-Pease displacement model. The electric conductivity and Seebeck coefficient in the Bi-NW devices were investigated before and after proton irradiation at different temperatures. Although the Seebeck coefficient remained stable at various irradiation energies, the electrical conductivity significantly declined with increasing proton energy up to 40 MeV.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4919786.html;jsessionid=aVzBfopHL306SXBTHT1K3h1t.x-aip-live-03?itemId=/content/aip/journal/adva/5/5/10.1063/1.4919786&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4919786&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4919786'
Right1,Right2,Right3,