Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4919808
1.
1.S.U.S. Choi, ASME Fluid Eng. 231, 99 (1993).
2.
2.Sarit K. Das, Stephen U. S. Choi, Wenhua Yu, and T. Pradeep, Nanofluids-Science and Technology (A John Wiley & Sons Inc Publication, 2008).
3.
3.Wei Yu, Huaqing Xie, and Lifei Chen, Nanofluids, Smart Nanoparticles Technology, Dr. Abbass Hashim Ed., ISBN: 978-953-51-0500-8, InTech, (2012). Available from: http://www.intechopen.com/books/smartnanoparticles-technology/nanofluids.
4.
4.G. Paul, S. Sarkar, T. Pal, P.K. Das, and I. Manna, J. of Colloid Interface Sci. 371, 20 (2012).
http://dx.doi.org/10.1016/j.jcis.2011.11.057
5.
5.L. Godson, B. Raja, D. Mohan Lal, and S. Wongwises, Exp. Heat Transfer: J. Thermal Energy Generation, Transport, Storage, and Conversion 23(4), 317 (2010).
6.
6.Hrishikesh E. Patel, Sarit K. Das, and T. Sundararajan, App. Phy. Lett. 83, 2931 (2003).
http://dx.doi.org/10.1063/1.1602578
7.
7.Hrishikesh E. Patel, T. Sundararajan, and Sarit K. Das, J. Nanopart. Res. 1 (2009) doi:10.1007/s11051-009-9658-2.
8.
8.J.A. Esatmen, S.U.S. Choi, S. Li, W. Yu, and L.J. Thompson, App. Phys. Lett. 78, 718 (2001).
http://dx.doi.org/10.1063/1.1341218
9.
9.J.M. Salehi, M. M. Heyhat, and A. Rajabpour, App. Phys. Lett. 102, 231907 (2013).
http://dx.doi.org/10.1063/1.4809998
10.
10.L. Shyam Sundar and K.V. Sharma, Int. J. Dynamics Fluids 4, 57 (2008).
11.
11.Min-Sheng Liu, Mark Ching-Cheng Lin, C. Y. Tsai, and Chi-Chuan Wang, Int. J. Heat Mass Transfer 49, 3028 (2006).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.02.012
12.
12.S.M.S. Murshed, K.C. Leong, and C. Yang, Int. J. Therm. Sci. 44, 367 (2005).
http://dx.doi.org/10.1016/j.ijthermalsci.2004.12.005
13.
13.Xian-ju Wang, Dong-sheng Zhu, and Shuo yang, Chem. Phys. Lett. 470, 107 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.01.035
14.
14.Yimin Xuan and Qiang Li, Int. J. Heat Fluid Flow 21, 58 (2000).
http://dx.doi.org/10.1016/S0142-727X(99)00067-3
15.
15.Taehyun Cho, Ilhyun Baek, Jonghee Lee, and Sangdo Park, J. Ind. Eng. Chem. 11, 400 (2005).
16.
16.Warrier, Teja, Nanoscale Res. Lett. 6, 247 (2011), doi:10.1186/1556-276X-6-247.
http://dx.doi.org/10.1186/1556-276X-6-247
17.
17.Heydar Maddah, Mahdokht Rezazadeh, Mojtaba Maghsoudi, and Syamak NasiriKokhdan, J. Nanostruct Chem. 3, 28 (2013), doi:10.1186/2193-8865-3-28.
http://dx.doi.org/10.1186/2193-8865-3-28
18.
18.Sezer Ozerinc, Sadik Kakac, and Almila Guvenc Yazicioglu, Microfluidics Nanofluidics (2009) doi:10.1007/s10404-009-0524-4.
19.
19.G. Paul, M. Chopkar, I. Manna, and P. K. Das, Renewable Sustainable Energy Rev. 14, 1913 (2010).
http://dx.doi.org/10.1016/j.rser.2010.03.017
20.
20.Jin Huang and Xianju Wang, IEEE (2009) 978-1-4244-4412-0/09.
21.
21.E.M. Abdelrazek, H.M. Ragab, and M. Abdelaziz, Plastic Polymer Tech. 2(1), 1 (2013).
22.
22.A.Z. Dakroury, M.B.S. Osman, and A.W.A. El-Sharkawy, Int. J. Thermophys. 11(3), 515 (1990).
http://dx.doi.org/10.1007/BF00500843
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4919808
Loading
/content/aip/journal/adva/5/5/10.1063/1.4919808
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4919808
2015-05-04
2016-09-30

Abstract

Nanofluids are prepared by dispersing polyvinylpyrrolidone coated silver nanoparticles in distilled water. The thermal conductivity of nanofluids is measured by KD2 Pro thermal analyzer which is based on transient hot wire method. The influence of size and concentration of nanoparticles, surfactant and temperature of suspensions on the enhancement of the thermal conductivity is analyzed. The experimental results show that the thermal conductivity of nanofluids increases with the decrease in the size and increase in the concentration of the nanoparticles. Even with low volume fraction of 0.1 % and 20 nm size of silver nanoparticles, a high thermal conductivity enhancement of 54 % has been achieved. The surfactant and the temperature have a significant effect on the thermal conductivity enhancement of the nanofluids. The increase in temperature of the nanofluid from 30oC to 60oC increases its thermal conductivity up to 69 % whereas the addition of surfactant lessens the thermal conductivity enhancement to 34.2% with polyvinylpyrrolidone and 31.5 % with sodium dodecyl sulfate. The experimental results are compared with the existing theoretical models.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4919808.html;jsessionid=QlzybUzD27vrjL0U3PsGQfHE.x-aip-live-02?itemId=/content/aip/journal/adva/5/5/10.1063/1.4919808&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4919808&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4919808'
Right1,Right2,Right3,