Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4919811
1.
1.J. Zhang, C. X. Pan, P. F. Fang, J. H. Wei, and R. Xiong, ACS Appl. Mater.&Inter 2, 1173 (2010).
http://dx.doi.org/10.1021/am100011c
2.
2.S. U. Khan, M. Al-Shahry, and W. B. Ingler, Science 297, 2243 (2002).
http://dx.doi.org/10.1126/science.1075035
3.
3.H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, and G. Q. Lu, Nature 453, 638 (2008).
http://dx.doi.org/10.1038/nature06964
4.
4.R. Scotti, M. D’Arienzo, F. Morazzoni, and I. R. Bellobono, Appl. Catal. B-Environ. 88, 323 (2009).
http://dx.doi.org/10.1016/j.apcatb.2008.11.012
5.
5.F. Tian, Y. P. Zhang, J. Zhang, and C. X. Pan, J. Phys. Chem. C. 116, 7515 (2012).
http://dx.doi.org/10.1021/jp301256h
6.
6.D. L. Li, X. D. Jiang, Y. P. Zhang, B. Zhang, and C. X. Pan, J. Mater. Res. 1, 1 (2013).
7.
7.R. Scotti, I. R. Bellobono, C. Canevali, C. Cannas, M. Catti, M. D’Arienzo, A. Musinu, S. Polizzi, M. Sommariva, and A. Testino, Chem. Mater. 20, 4051 (2008).
http://dx.doi.org/10.1021/cm800465n
8.
8.K. Lv, B. Cheng, J. G. Yu, and G. Liu, Phys. Chem. Chem. Phys. 14, 5349 (2012).
http://dx.doi.org/10.1039/c2cp23461k
9.
9.X. D. Jiang, A. Q. Shi, Y. Q. Wang, Y. Z. Li, and C. X. Pan, Nanoscale 3, 3573 (2011).
http://dx.doi.org/10.1039/c1nr10533g
10.
10.T. L. Thompson and J. T. Yates, Top. Catal. 35, 197 (2005).
http://dx.doi.org/10.1007/s11244-005-3825-1
11.
11.M. Kong, Y. Z. Li, X. Chen, T. T. Tian, P. F. Fang, F. Zheng, and X. J. Zhao, J. Am. Chem. Soc. 133, 16414 (2011).
http://dx.doi.org/10.1021/ja207826q
12.
12.X. D. Jiang, Y. P. Zhang, J. Jiang, Y. S. Rong, Y. Wang, Y. C. Wu, and C. X. Pan, J. Phys. Chem. C. 116, 22619 (2012).
http://dx.doi.org/10.1021/jp307573c
13.
13.R. Nakamura, T. Okamura, N. Ohashi, A. Imanishi, and Y. J. Nakato, J. Am. Chem. Soc. 127, 12975 (2005).
http://dx.doi.org/10.1021/ja053252e
14.
14.A. Imanishi, T. Okamura, N. Ohashi, R. Nakamura, and Y. J. Nakato, J. Am. Chem. Soc. 129, 11569 (2007).
http://dx.doi.org/10.1021/ja073206+
15.
15.N. Sakai, A. Fujishima, T. Watanabe, and K. Hashimoto, J. Phys. Chem. B 105, 3023 (2001).
http://dx.doi.org/10.1021/jp003212r
16.
16.J. Zhang, Y. P. Zhang, Y. K. Lei, and C. X. Pan, Catal. Sci. & Technol. 1, 273 (2011).
http://dx.doi.org/10.1039/c0cy00051e
17.
17.E. M. Hassan, Basma A. A. Balboul, and M. A. Abdel-Rahman, Defect and Diffusion Forum 319-320, 151 (2011).
http://dx.doi.org/10.4028/www.scientific.net/DDF.319-320.151
18.
18.T. H. Lang, C. V. Tan, K. T. Dung, and L. H. Chien, World Jour. of Nuclear Sci. and Tech. 4, 33 (2014).
http://dx.doi.org/10.4236/wjnst.2014.41006
19.
19.O. M. Hemeda1, K. R. Mahmoud, and T. Sharshar, Eur. Phys. J. Plus 129, 173 (2014).
http://dx.doi.org/10.1140/epjp/i2014-14173-4
20.
20.F. Zheng, Y. Liu, Z. Liu, Y. Q. Dai, P. F. Fang, and S. J. Wang, J. Cryst. Growth. 353, 55 (2012).
http://dx.doi.org/10.1016/j.jcrysgro.2012.05.008
21.
21.T. Pasang1, K. Namratha, T. Parvin, C. Ranganathaiah, and K. Byrappa, Materials Research Innovations (2014).
22.
22.A. Uedono, K. Shimayama, M. Kiyohara, Z. Q. Chen, and K. Yamabe, Jour. of App. Phy. 92, 2697 (2002).
http://dx.doi.org/10.1063/1.1498889
23.
23.S. J. Wang, Z. Q. Chen, B. Wang, Y. C. Wu, P. F. Fang, and Y. X. Zhang, Applied Positron Spectroscopy in Chinese (Hubei Science and Technology press, China, 2009).
24.
24.X. D. Xue, L. L. Liu, and W. Zhu, J. Appl. Phys. 115, 033902 (2014).
http://dx.doi.org/10.1063/1.4862306
25.
25.X. W. Liu, K. Zhou, L. Wang, B. Y. Wang, and Y. D. Li, J. Am. Chem. Soc. 131, 3140 (2009).
http://dx.doi.org/10.1021/ja808433d
26.
26.T. Y. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao, and N. J. Serpone, Photochem. Photobiol. A. 140, 163 (2001).
http://dx.doi.org/10.1016/S1010-6030(01)00398-7
27.
27.A. Stevanovic, M. Büttner, Z. Zhang, and J. T. Yates, Jr, J. Am. Chem. Soc. 134, 324 (2011).
http://dx.doi.org/10.1021/ja2072737
28.
28.C. L. Pang, R. Lindsay, and G. Thornton, Chem. Rev. (2013) Surface Chemitry of Oxides.
29.
29.L. T. Tracy and T. Y. John, Chem. Rev. 106, 4428 (2006).
http://dx.doi.org/10.1021/cr050172k
30.
30.J. M. Englert, P. Vecera, K. C. Knirsch, R. A. Schafer, F. Hauke, and A. Hirsch, ACS Nano 7, 5472 (2013).
http://dx.doi.org/10.1021/nn401481h
31.
31.Q. J. Xiang, K. Lv, and J. G. Yu, Appl. Catal. B-Environ. 96, 557 (2010).
http://dx.doi.org/10.1016/j.apcatb.2010.03.020
32.
32.W. G. Su, J. Zhang, Z. C. Feng, T. Chen, P. L. Ying, and C. J. Li, J. Phys. Chem. C. 112, 7710 (2008).
http://dx.doi.org/10.1021/jp7118422
33.
33.J. Zhang, M. J. Li, Z. C. Feng, J. Chen, and C. J. Li, J. Phys. Chem. B. 110, 927 (2003).
http://dx.doi.org/10.1021/jp0552473
34.
34.Q. F. Zhou, S. H. Wu, Q. Q. Zhang, J. X. Zhang, J. Chen, and W. H. Zhang, Chin. Chem. Lett. 14, 306 (1997).
35.
35.C. Y. Xu, P. X. Zhang, and L. Yan, J. Raman Spectrosc. 32, 862 (2001).
http://dx.doi.org/10.1002/jrs.773
36.
36.W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. J. Chen, Phys. D: Appl. Phys. 33, 912 (2000).
http://dx.doi.org/10.1088/0022-3727/33/8/305
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4919811
Loading
/content/aip/journal/adva/5/5/10.1063/1.4919811
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4919811
2015-05-04
2016-12-03

Abstract

In this paper, the photocatalytic process of TiO (P25) is directly characterized by using a positron annihilation lifetime spectroscopy (PALS), high-resolution transmission electron microscopy (HRTEM), Photoluminescence spectroscopy (PL) and UV Raman spectroscopy (Raman). The experimental results reveal that: 1) From PALS measurements, because τ and τ values and their intensity (I and I) assigned to the different size and amounts of defects, respectively, their variations indicate the formation of different types and amounts of defects during the absorption and degradation. 2) HRTEM observations show that the lattice images become partly blurring when the methylene blue is fully degradated, and clear again after exposed in the air for 30 days. According to the results, we propose a mechanism that the lattice distortion induces the defects as electron capture sites and provides energy for improving photocatalytic process. Meanwhile, the lattice distortion relaxation after exposing in the air for 30 days perfectly explains the gradual deactivation of TiO, because the smaller vacancy defects grow and agglomerate through the several photocatalytic processes. The instrumental PL and Raman are also used to analyze the samples and approved the results of PALS and HRTEM.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4919811.html;jsessionid=RURQscSaCWHqeCDWitjnRyXe.x-aip-live-06?itemId=/content/aip/journal/adva/5/5/10.1063/1.4919811&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4919811&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4919811'
Right1,Right2,Right3,