Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, Journal of Applied Physics 98, 041301 (2005).
2.D. C. Look, Materials Science and Engineering B-Solid State Materials for Advanced Technology 80, 383 (2001).
3.J. M. Ntep, S. S. Hassani, A. Lusson, A. Tromson-Carli, D. Ballutaud, G. Didier, and R. Triboulet, Journal of Crystal Growth 207, 30 (1999).
4.D. Schulz, S. Ganschow, D. Klimm, M. Neubert, M. Rossberg, M. Schmidbauer, and R. Fornari, Journal of Crystal Growth 296, 27 (2006).
5.C. L. Zhang, W. N. Zhou, Y. Hang, Z. Lu, H. D. Hou, Y. B. Zuo, S. J. Qin, F. H. Lu, and S. L. Gu, Journal of Crystal Growth 310, 1819 (2008).
6.M. D. McCluskey and S. J. Jokela, Physica B-Condensed Matter 401, 355 (2007).
7.A. Nuruddin and J. R. Abelson, Thin Solid Films 394, 49 (2001).
8.M. H. Weber, N. S. Parmar, K. A. Jones, and K. G. Lynn, Journal of Electronic Materials 39, 573 (2010).
9.A. Janotti and C. G. Van de Walle, Reports on Progress in Physics 72 (2009).
10.C. G. Van de Walle, Physical Review Letters 85, 1012 (2000).
11.C. H. Park, S. B. Zhang, and S. H. Wei, Physical Review B 66, 073202 (2002).
12.N. S. Parmar, M. D. McCluskey, and K. G. Lynn, Journal of Electronic Materials 42, 3426 (2013).
13.B. K. Meyer, J. Sann, and A. Zeuner, Superlattices and Microstructures 38, 344 (2005).
14.B. K. Meyer, J. Stehr, A. Hofstaetter, N. Volbers, A. Zeuner, and J. Sann, Applied Physics a-Materials Science & Processing 88, 119 (2007).
15.S. S. Lin, J. G. Lu, Z. Z. Ye, H. P. He, X. Q. Gu, L. X. Chen, J. Y. Huang, and B. H. Zhao, Solid State Communications 148, 25 (2008).
16.F. A. Selim, M. C. Tarun, D. E. Wall, L. A. Boatner, and M. D. McCluskey, Applied Physics Letters 99, 3 (2011).
17.H. S. Kang, B. Du Ahn, J. H. Kim, G. H. Kim, S. H. Lim, H. W. Chang, and S. Y. Lee, Applied Physics Letters 88, 3 (2006).
18.M. C. Tarun, M. Z. Iqbal, and M. D. McCluskey, Aip Advances 1, 7 (2011).
19.J. H. Lim, K. K. Kim, D. K. Hwang, H. S. Kim, J. Y. Oh, and S. J. Park, Journal of the Electrochemical Society 152, G179 (2005).
20.Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, and H. W. White, Journal of Crystal Growth 216, 330 (2000).
21.D. C. Look and B. Claftin, Physica Status Solidi B-Basic Solid State Physics 241, 624 (2004).
22.N. S. Parmar, Ph.D. thesis,Washington State University, 2012.
23.P. J. Schultz and K. G. Lynn, Reviews of Modern Physics 60, 701 (1988).
24.F. Tuomisto, V. Ranki, K. Saarinen, and D. C. Look, Physical Review Letters 91, 4 (2003).
25.A. Vanveen, H. Schut, M. Clement, J. M. M. Denijs, A. Kruseman, and M. R. Ijpma, Applied Surface Science 85, 216 (1995).
26.E. H. Khan, M. H. Weber, and M. D. McCluskey, Physical Review Letters 111, 5 (2013).
27.K. M. Johansen, A. Zubiaga, I. Makkonen, F. Tuomisto, P. T. Neuvonen, K. E. Knutsen, E. V. Monakhov, A. Y. Kuznetsov, and B. G. Svensson, Physical Review B 83, 7 (2011).
28.N. S. Parmar and K. G. Lynn, Applied Physics Letters 106, 022101 (2015).
29.S. J. Jokela and M. D. McCluskey, Physical Review B 76, 4 (2007).
30.F. G. Gartner and E. Mollwo, Phys. Status Solidi B 89, 381 (1978).
31.F. D. Auret, J. M. Nel, M. Hayes, L. Wu, W. Wesch, and E. Wendler, Superlattices and Microstructures 39, 17 (2006).
32.J. C. Simpson and J. F. Cordaro, Journal of Applied Physics 63, 1781 (1988).
33.H. von Wenckstern, R. Pickenhain, H. Schmidt, M. Brandt, G. Biehne, M. Lorenz, M. Grundmann, and G. Brauer, Applied Physics Letters 89, 3 (2006).
34.T. Frank, G. Pensl, R. Tena-Zaera, J. Zuniga-Perez, C. Martinez-Tomas, V. Munoz-Sanjose, T. Ohshima, H. Itoh, D. Hofmann, and D. Pfisterer, Applied Physics A- Materials Science & Processing 88, 141 (2007).

Data & Media loading...


Article metrics loading...



ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ∼1 × 1016 cm−3. IR measurements show a local vibrational mode (LVM) at 3226 cm−1, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O–H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm−1. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd