Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.B. Heinrich and J. F. Cochran, “Ultrathin metallic magnetic films: magnetic anisotropies and exchange interactions,” Adv. Phys. 42, 523 (1993).
2.B. Heinrich, “Ferromagnetic Resonance in Ultrathin Film Structures,” in Ultrathin magnetic structures II, edited by B. Heinrich and J.A.C. Bland (Springer-Verlag, Berlin, 1994).
3.S. Mamica and H. Puszkarski, “Theory of SWR critical angle effect in Ferromagnetic exchange-coupled bilayer film,” Acta Phys. Supersficium 5, 5 (2003).
4.K Nesteruk, R Żuberek, S Piechota, M W Gutowski, and H Szymczak, “Thin film’s magnetostriction investigated by strain modulated ferromagnetic resonance,” Meas. Sci. Technol. 25, 075502 (2014).
5.Z. Zhang, L. Zhou, P. E. Wigen, and K. Ounadjela, “Angular dependence of ferromagnetic resonance in exchange-coupled Co/Ru/Co trilayer structures,” Phys. Rev. B 50, 6094 (1994).
6.A. Layadi and J. O. Artman, “Study of antiferromagnetic coupling by Ferromagnetic Resonance (FMR),” J. Magn. Magn. Mater. 176, 175-182 (1997);
6.A. Layadi and J. O. Artman, “Ferromagnetic resonance in a coupled two-layer system,” J. Magn. Magn. Mater. 92, 143-154 (1990).
7.J. Linder, Z. Kollonitsch, E. Kosubek, M. Farle, and K. Baberschke, “In situ detection of two ferromagnetic resonance modes in coupled Ni/Cu/Co/Cu(001) trilayer structures,” Phys. Rev. B 63, 094413 (2001).
8.A. Layadi, “Effect of biquadratic coupling and in-plane anisotropy on the resonance modes of a trilayer system,” Phys. Rev. B 65, 104422 (2002);
8.A. Layadi, “A theoretical study of the resonance modes of coupled thin films in the rigid layer model,” Phys. Rev. B 69, 144431 (2004).
9.Peng-Bin He, Zai-Dong Li, An-Lian Pan, Qiang Wan, Qing-Lin Zhang, Ri-Xing Wang, Yan-Guo Wang, Wu-Ming Liu, and Bing-Suo Zou, “Theory of ferromagnetic resonance in magnetic trilayers with a tilted spin polarizer,” Phys. Rev. B 78, 054420 (2008).
10.Yajun Wei, Somnath Jana, Rimantas Brucas, Yevgen Pogoryelov, Mojtaba Ranjbar, Randy K. Dumas, Peter Warnicke, Johan A˚kerman, Dario A. Arena, Olof Karis, and Peter Svedlindh, “Magnetic coupling in asymmetric FeCoV/Ru/FeNi trilayers,” J. Appl. Phys. 115, 17D129 (2014).
11.O. Yalçın, S. Ünlüer, S. Kazan, M. Özdemir, and Y. Öner, “Temperature evolution of magnetic properties for (Cu/Co)60/Femultilayer,” J. Magn. Magn. Mat. 373, 144-150 (2015).
12.Yajun Wei, Serkan Akansel, Thomas Thersleff, Ian Harward, Rimantas Brucas, Mojtaba Ranjbar, Somnath Jana, Pia Lansaker, Yevgen Pogoryelov, Randy K. Dumas, Klaus Leifer, Olof Karis, Johan Åkerman, Zbigniew Celinski, and Peter Svedlindh, “Exponentially decaying magnetic coupling in sputtered thin film FeNi/Cu/FeCo trilayers,” Appl. Phys. Lett. 106, 042405 (2015).
13.Q. Y. Jin, H. R. Zhai, Y. B. Xu, Y. Zhai, M. Lu, S. M. Zhou, J. S. Payson, G. L. Dunifer, R. Naik, and G. W. Auner, “A study of interlayer coupling in Co/Cu multilayers,” J. Appl. Phys. 77, 3971 (1995).
14.J. Geshev, L. G. Pereira, and J. E. Schmidt, “Dependence of the ferromagnetic resonance modes on the coupling strength in exchange-coupled trilayer structures,” Physica B 320, 169 (2002).
15.S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheuerlein, E. J. O’Sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Yu Lu, M. Rooks, P. L. Trouilloud, R. A. Wanner, and W. J. Gallagher, “Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited),” J. Appl. Phys. 85, 5828 (1999).
16.Y. Huai, J. Zhang, G. W. Anderson, P. Rana, S. Funada, C.-Y. Hung, M. Zhao, and S. Tran, “Spin-valve heads with synthetic antiferromagnet CoFe/Ru/CoFe/IrMn,” J. Appl. Phys. 85, 5528 (1999).
17.R. L. Rodrigez-Suarez, S. M. Rezende, and A. Azevedo, “Ferromagnetic resonance of the residual coupling in spin-valve systems,” Phys. Rev. B 71, 224406 (2005).
18.A. Layadi, “Study of the resonance modes of a magnetic tunnel junction-like system,” Phys. Rev. B 72, 024444 (2005).
19.J. Ben Youssef and A. Layadi, “Ferromagnetic Resonance Study of Permalloy/Cu/Co/NiO spin valve system,” J. Appl. Phys. 108, 053913 (2010).
20.H. S. Tarazona Coronel, C. V. Landouro, and J. Quispe Marcatoma, “Ferromagnetic resonance of spin valves : the case of IrMn(150Å)/Co(50 Å)/Ru(32 Å)/NiFe(50 Å) system,” Revista de Investigation de Fisica 17, 141702101 (2014).
21.M. Buchmeier, D. E. Bürger, P. A. Grünberg, C. M. Schneider, R. Meijers, R. Calarco, C. Raeder, and M. Farle, “Anisotropic FMR-liewidth of triple-domain Fe layers on hexagonal GaN(001),” phys. sta. sol. (a) 203, 1567 (2006).
22.L. Berger, “Effect of interface on Gilbert damping and ferromagnetic resonance linewidth in magnetic multilayers,” J. Appl. Phys. 90, 4632 (2001).
23.B. Heinrich, G. Woltersdorf, R. Urban, and E. Simanek, “Role of dynamic exchange coupling in magnetic relaxations of metallic multilayer films,” J. Appl. Phys. 93, 7545 (2003).
24.E. Simanek, “Gilbert damping in magnetic multilayers,” Phys. Rev. B 67, 144418 (2003).
25.J. R. Fermin, Antonio Azeredo, F. M. de Aguir, Biao Li, and S. M. Rezende, “Ferromagnetic resonance linewidth and anisotropy dispersion in thin Fe films,” J. Appl. Phys. 85, 7316 (1999).
26.A. Layadi, “Exchange anisotropy : A ferromagnetic resonance study,” Phys. Rev. B 66, 184423 (2002);
26.A. Layadi, “Resonance modes of cubic single crystal thin film with exchange anisotropy : A theoretical study,” J. Appl. Phys. 87, 1429 (2000).
27.A. Layadi, “A theoretical investigation of the effect of the oblique anisotropy axis on the ferromagnetic resonance linewidth,” J. Appl. Phys. 86, 1625 (1999).
28.Z. Celinski and B. Heinrich, “Ferromagnetic resonance linewidth of Fe ultrathin films grown on a bcc Cu substrate,” J. Appl. Phys. 70, 5935 (1991).
29.B. Heinrich, J. F. Cochran, M. Kowalewski, J. Kirschner, Z. Celinski, A. S. Arrot, and K. Myrtle, “Magnetic anisotropies and exchange coupling in ultrathin fcc Co(001) structures,” Phys. Rev. B 44, 9348 (1991).
30.B. Heinrich, S. T. Purcell, J. R. Dutcher, K. B. Urquhart, J. F. Cochran, and A. S. Arrot, “Structural and magnetic properties of ultrathin Ni/Fe bilayers grown epitaxially on Ag(001),” Phys. Rev. B 38, 12879 (1988).
31.P. Grünberg, “Layered magnetic structures in research and application,” Acta mater. 48, 239 (2000).
32.M. E. Filipkowski, C. J. Gutierrez, J. J. Krebs, and G. A. Prinz, “Temperature dependence of the 90°coupling in Fe/Al/Fe(001) magnetic trilayers,” J. Appl. Phys. 73, 5963 (1993).
33.J. C. Slonczewski, “Overview of the interlayer exchange theory,” J. Magn. Magn. Mat. 150, 13 (1995).
34.W. H. Meiklejohn and C. P. Bean, “New magnetic anisotropy,” Phys. Rev. 102, 1413 (1956).
35.N. J. Gökemeijer, R. L. Penn, D. R. Veblen, and C. L. Chien, “Exchange coupling in epitaxial CoO/NiFe bilayers with compensated and uncompensated interfacial spin structures,” Phys. Rev. B 63, 174422 (2001).
36.R. D. McMichael, M. D. Stiles, P. J. Chen, and W. F. Egelhoff, Jr, “Ferromagnetic resonance studies of NiO-coupled thin films of Ni80Fe20,” Phys. Rev. B 58, 8605 (1998).
37.Y. Ijiri, J. A. Borchers, R. W. Erwin, S.-H. Lee, P. J. Van der Zaag, and R. M. Wolf, “Perpendicular Coupling in Exchange-Biased Fe3O4/CoO Superlattices,” Phys. Rev. Lett. 80, 608 (1998).
38.Jing-guo Hu, Guo-jun Jin, and Yu-quiang Ma, “Ferromagnetic resonance and exchange anisotropy in ferromagnetic/antiferromagnetic bilayers,” J. Appl. Phys. 91, 2180 (2002).

Data & Media loading...


Article metrics loading...



The ferromagnetic resonance intrinsic field linewidth ΔH is investigated for a multilayer system such as a coupled trilayer and a spin valve structure. The magnetic coupling between two ferromagnetic layers separated by a nonmagnetic interlayer will be described by the bilinear J and biquadratic J coupling parameters. The interaction at the interface of the first ferromagnetic layer with the antiferromagnetic one is account for by the exchange anisotropy field, . A general formula is derived for the intrinsic linewidth ΔH. The explicit dependence of ΔH with H, J and J will be highlighted. Analytical expressions for each mode field linewidth are found in special cases. Equivalent damping constants will be discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd