Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.J. C. Slonczewski, “Current-driven excitation of magnetic multilayers,” J. Magn. Magn. Mater. 159, L1 (1996).
2.L. Berger, “Emission of spin waves by a magnetic multilayer traversed by a current,” Phys. Rev. B 54, 9353 (1996).
3.M. Tsoi, A. G. Jansen, J. Bass, W.  –C. Chiang, M. Seck, V. T. Tsoi, and P. Wyder, “Excitation of a magnetic multilayer by an electric current,” Phys. Rev. Lett. 80, 4281 (1998).
4.E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman, “Current-induced switching of domains in magnetic multilayer devices,” Science 285, 867 (1999).
5.J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, “Current-driven magnetization reversal and spin wave excitations in Co/Cu/Co pillar,” Phys. Rev. Lett. 84, 3149 (2000).
6.M. Tsoi, A. G. M. Jansen, J. Bass, W.  –C. Chiang, V. Tsoi, and P. Wyder, “Generation and detection of phase-coherent current-driven magnons in magnetic multilayers,” Nature (London) 406, 46 (2000).
7.S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J. Schoelkopf, R. A. Buhrman, and D. C. Ralph, “Microwave oscillations of a nanomagnet driven by a spin-polarized current,” Nature (London) 425, 380 (2003).
8.W. H. Rippard, M. R. Pufall, S. Kaka, S. E. Russek, and T. J. Silva, “Direct-Current induced dynamics in Co90Fe10/Ni80Fe20 point contacts,” Phys. Rev. Lett. 92, 027201 (2004).
9.O. Boulle, V. Cros, J. Grollier, L. G. Pereira, C. Deranlot, F. Petroff, G. Faini, J. Barna, and A. Fert, “Shaped angular dependence of the spin-transfer torque and microwave generation without magnetic field,” Nature Phys. 3, 492 (2007).
10.V. S. Pribiag, I. N. Krivorotov, G. D. Fuchs, P. M. Braganca, O. Ozatay, J. C. Sankey, D. C. Ralph, and R. A. Buhrman, “Magnetic vortex oscillator driven by d. c. spin-polarized current,” Nature Phys. 3, 498 (2007).
11.J. H. Chang, H. H. Chen, C. R. Chang, and Y. W. Liu, “Phase locking of dynamical modes in a nanomagnetic oscillator with a circularly spin-polarized current,” Phys. Rev. B 84, 054457 (2011).
12.M. Madami, S. Bonetti, G. Consolo, S. Tacchi, G. Carlotti, G. Gubbiotti, F. B. Mancoff, M. A. Yar, and J. Åkerman, “Direct observation of a propagating spin wave induced by spin-transfer torque,” Nature Nanotech. 6, 635 (2011).
13.S. Bonetti, P. Muduli, F. Mancoff, and J. Akernan, “Spin torque oscillator frequency versus magnetic field angle: The prospect of operation beyond 65 GHz,” Appl. Phys. Lett. 94, 102507 (2009).
14.M. R. Pufall, W. H. Rippard, S. Kaka, T. J. Silva, and S. E. Russek, “Frequency modulation of spin-transfer oscillators,” Appl. Phys. Lett. 86, 082506 (2005).
15.H. S. Choi, S. Y. Kang, S. J. Cho, I. Y. Oh, M. Shin, H. Park, C. Jang, B. C. Min, S. Y. Park, and C. S. Park, “Spin nano-oscillator-based wireless communication,” Sci. Rep. 4, 5486 (2014).
16.P. M. Braganca, B. A. Gurney, B. A. Wilson, J. A. Katine, S. Maat, and J. R. Childress, “Nanoscale magnetic field detection using a spin torque oscillator,” Nanotechnology 21, 235202 (2010).
17.J. G. Zhu, X. Zhu, and Y. Tang, “Microwave assisted magnetic recording,” IEEE Trans. Magn. 44, 125 (2008).
18.K. Kudo, T. Nagasawa, K. Mizushima, H. Suto, and R. Sato, “Numerical Simulation on temporal response of spin-torque oscillator to magnetic pulses,” Appl. Phys. Express 3, 043002 (2010).
19.D. Houssameddine, U. Ebels, B Delaet, B. Rodmacq, I. Rirastrau, F. Ponthenier, M. Brunet, C. Thirion, J.  –P. Michel, L. Perjbeanu-Buda, M.  –C. Cyrille, O. Redon, and B. Dieny, “Spin-torque oscillator using a perpendicular polarizer and a planar free layer,” Nature Mater. 6, 447 (2007).
20.H. Zhang, Z. W. Hou, J. W. Zhang, Z. Z. Zhang, and Y. W. Liu, “Precession frequency and fast switching dependence on the in-plane and out-of-plane dual spin-torque polarizers,” Appl. Phys. Lett. 100, 142409 (2012).
21.A. Dussaux, B. Georges, J. Grollier, V. Cros, A. V. Khvalkovskiy, A. Fukushima, M. Konoto, H. Kubota, K. Yakushiji, S. Yuasa, K. A. Zvezdin, K. Ando, and A. Fert, “Large microwave generation from current-driven magnetic vortex oscillators in magnetic tunnel junctions,” Nature Comm. 1, 8 (2010).
22.A. Dussaux, E. Grimaldi, B. Rache Salles, A. S. Jenkins, A. V. Khvalkovskiy, P. Bortolotti, J. Grollier, H. Kubota, A. Fukushima, K Yakushiji, S. Yuasa, V. Cros, and A. Fert, “Largr amplitude spin torque vortex oscillations at zero external field using a perpendicular spin polarizer,” Appl. Phys, Lett. 105, 022404 (2014).
23.Y. zhou, H. Zhang, Y. W. Liu, and J. Akerman, “Macrospin and micromagnetic studies of tilted polarizer spin-torque nano-oscillators,” J. Appl. Phys. 112, 063903 (2012).
24.C. Klein, C. Petitjean, and X. Waintal, “Interplay between nonequilibrium and equilibrium spin torque using synthetic ferrimagnets,” Phys. Rev. Lett. 108, 086601 (2012).
25.S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayalawa, F. Matsukura, and H. Ohno, “A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction,” Nature Mater. 9, 721 (2010).
26.H. Kubota, S. Ishibashi, T. Saruya, T. Nozaki, A. Fukushima, K. Yakushiji, K. Ando, Y. Suzuki, and S. Yuasa, “Enhancement of perpendicular magnetic anisotropy in FeB free layers using a thin MgO cap layer,” J. Appl. Phys. 111, 07C723 (2012).
27.Z. Zeng, P. K. Amiri, I. N. Krivorotov, H. Zhao, G. Finocchio, J. P. Wang, J. A. Katine, Y. Huai, J. Langer, K. Galatsis, K. L. Wang, and H. Jiang, “High-power coherent microwave emission from magnetic tunnel junction nano-oscillators with perpendicular anisotropy,” ACS Nano. 6, 6115 (2012).
28.H. Kubota, K. Yakushiji, A. Fukushima, S. Tamaru, M. Konoto, T. Nozaki, S. Ishibashi, T. Saruya, S. Yakata, T. Taniguchi, H. Arai, and H. Imamura, “Spin-torque oscillator based on magnetic tunnel junction with a perpendicularly magnetized free layer and in-plane magnetized polarizer,” Appl. Phys. Express 6, 103003 (2013).
29.Z. Zeng, G. Finocchio, B. Zhang, P. K. Amiri, J. A. Katine, I. N. Krivorotov, Y. Huai, J. Langer, B. Azzerboni, K. L. Wang, and H. Jiang, “Ultralow-current-density and bias-field-free spin-transfer nano-oscillator,” Sci. Rep. 3, 1426 (2013).
30.T. Taniguchi, S. Tsunegi, H. Kubota, and H. Imamura, “Self-oscillation in spin torque oscillator stabilized by field-like torque,” Appl. Phys. Lett. 104, 152411 (2014).
31.J. C. Slonczewski, “Current, torques, and polarization factors in magnetic tunnel junctions,” Phys. Rev. B 71, 024411 (2005).
32.J. C. Slonczewski and J. Z. Sun, “Theory of voltage-driven currrent and torque in magnetic tunnel junctions,” J. Magn. Magn. Mater. 310, 169 (2007).
33.T. Taniguchi, H. Arai, S. Tsunegi, S. Tamaru, H. Kubota, and H. Imamura, “Critical field of spin torque oscillator with perpendicularly magnetized free layer,” Appl. Phys. Express 6, 123003 (2013).
34.S. E. Russek, S. Kaka, W. H. Rippard, M. R. Pufall, and T. J. Silva, “Finite-temperature modeling of nanoscale spin-transfer oscillators,” Phys. Rev. B 71, 104425 (2005).
35.O. Boulle, V. Cros, J. Grollier, L. G. Pereira, C. Deranlot, and F. Petroff, “Microwave excitations associated with a wavy angular dependence of the spin transfer torque: Model and experiments,” Phys. Rev. B 77, 174403 (2008).
36.P. Balá, M. Gmitraž, and J. Barnaś, “Current-induced dynamics in noncollinear dual spin values,” Phys. Rev. B 80, 174404 (2009).
37.C. Fowley, V. Sluka, K. Bernert, J. Lindner, J. Fassbender, W. H. Rippard, M. R. Pufall, S. E. Russek, and A. M. Deac, “Zero-field spin-transfer oscillators combining in-plane and out-of-plane magnetized layers,” Appl. Phys. Express 7, 043001 (2014).
38.J. Xiao and A. Zangwill, “Macrospin models of spin transfer dynamics,” Phys. Rev. B 72, 014446 (2005).
39.S. Tamaru, H. Kubota, K. Yakushiji, T. Nozaki, M. Konoto, A. Fukushima, H. Imamura, T. Taniguchi, H. Arai, T. Yamagi, and S. Yuasa, “Bias field angle dependence of the self-oscillation of spin torque oscillators having a perpendicularly magnetized free layer and in-plane magnetized reference layer,” Appl. Phys. Express 7, 063005 (2014).

Data & Media loading...


Article metrics loading...



We theoretically investigate the influence of the field-like spin torque term on the oscillation characteristics of spin transfer oscillators, which are based on MgO magnetic tunnel junctions (MTJs) consisting of a perpendicular magnetized free layer and an in-plane magnetized pinned layer. It is demonstrated that the field-like torque has a strong impact on the steady-state precession current region and the oscillation frequency. In particular, the steady-state precession can occur at zero applied magnetic field when the ratio between the field-like torque and the spin transfer torque takes up a negative value. In addition, the dependence of the oscillation properties on the junction sizes has also been analyzed. The results indicate that this compact structure of spin transfer oscillator without the applied magnetic field is practicable under certain conditions, and it may be a promising configuration for the new generation of on-chip oscillators.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd