Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.For example, P. Rudolph, Prog. Cryst. Growth Charact. 29, 275 (1994).
2.For example, T. E. Schlesinger et al., Mater. Sci. Eng. 32, 103 (2002).
3.S. Sen, W. H. Konkel, S. J. Tighe, L. G. Bland, S. R. Sharma, and R. E. Taylor, J. Crystal Growth 86, 111 (1988).
4.S. Sen and J. E. Stannard, Prog. Crystal Growth and Charact. 29, 253 (1994).
5.K. Chattopadhyay, S. Feth, H. Chen, A. Burger, and Ching-Hua Su, J. Crystal growth 191, 377 (1998).
6.Ching-Hua Su, Yi-Gao Sha, S. L. Lehoczky, Hao-Chieh Liu, Rei Fang, and R. F. Brebrick, J. Crystal Growth 183, 519 (1998).
7.Ching-Hua Su and S. L. Lehoczky, J. Crystal Growth 319, 4 (2011).
8.Ching-Hua Su, S. L. Lehoczky, and F. R. Szofran, J. Appl. Phys. 60, 3777 (1986).
9.T-C. Yu and R. F. Brebrick, J. Phase Equilibria 13, 476 (1992).
10.L. M. Clark and R. E. Taylor, J. Appl. Phys. 46, 714 (1975).
11.D. J. Williams, Properties of Narrow Gap Cadmium-based Compounds, emis Datareviews series, edited byP. Capper (INSPECT publication, 1994), p. 399.
12.R. N. Bhargava, Properties of Wide Bandgap II-VI Semiconductors, emis Datareviews series, edited byR. Bhargava (INSPECT publication, 1997), p. 27.
13.K. C. Mills, Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides (Butterworths, London, 1974).
14.I. Barin, O. Knacke, and O. Kubaschewski, Thermochemical Properties of Inorganic Substances (Supplement) (Springer-Verlag, 1977).
15.F. T. J. Smith, Met. Trans. 1, 617 (1970).
16.P. Hoschl, E. Belas, L. Tujanska, R. Grill, J. Franc, R. Fesh, and P. Moravec, J. Crystal Growth 220, 444 (2000).
17.D. de Nobel, Philips Res. Repts. 14, 361 (1959).
18.Ching-Hua Su, J. Applied Phys. 103, 084903 (2008).
19.S. M. Johnson, S. Sen, W. H. Konkel, and M. H. Kalisher, J. Vac. Sci. Technol B9, 1987 (1991).
20.Y. Pei, A. LaLonde, S. Iwanaga, and G. J. Snyder, Energy and Environmental Science 4, 2085 (2011).
21.Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, Nature 473, 66 (2011).
22.C. B. Vining, W. Laskow, J. O. Hanson, R. R. Vanderbeck, and P. D. Gorsuch, J. Appl. Phys. 69, 4333 (1991).

Data & Media loading...


Article metrics loading...



The thermal conductivity, electrical conductivity, and Seebeck coefficient of a vapor-grown CdTe and two melt-grown Cd Zn Te crystals, including In-doped CZT-30 and un-doped CZT-34 samples, were measured from room temperature to 780oC. The measured thermal conductivity of CdTe was higher than the two CdZnTe samples in the low temperature range and the three sets of data merged together at temperature above 750oC. The measured electrical conductivities of CdTe and CZT-30 were close to be intrinsic from 190oC to 780oC. The CZT-34 sample showed higher electrical conductivity value at 290oC and merged with the data of CZT-30 at temperatures above 650oC. The measured Seebeck coefficients for all three samples showed high positive values, between 0.9 and 1.1mV/K, in the intermediate temperature range between 350 and 550oC and, as temperature increased, decreased slowly and converted to n-type. The Figure of Merit for the thermoelectric application, T, calculated for the three samples were orders of magnitude lower than the state-of-the-art p-type thermoelectric materials mainly due to the low values of the electrical conductivity. A rough estimate was made on the hole concentration needed to improve the value of T for CdTe to 1.0 at 500oC. A simple interpolation and extrapolation of the present data gives the value of T for the n-type intrinsic CdTe to be 1.2±0.4 at 1050oC.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd