Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4921075
1.
1.F. Gao, S. Mukherjee, Q. Z. Cui, and Z.Y. Gu, J. Phys. Chem. C 113, 9546 (2009).
http://dx.doi.org/10.1021/jp8112396
2.
2.C. X. Chen, Y. Lu, E. S. Kong, Y. F. Zhang, and S. T. Lee, Small 4, 1313 (2008).
http://dx.doi.org/10.1002/smll.200701309
3.
3.F. Banhart, Nano Lett. 1, 329 (2001).
http://dx.doi.org/10.1021/nl015541g
4.
4.S. Xu, M. Tian, J. Wang, J. Xu, J. Redwing, and M. Chan, Small 1, 1221 (2005).
http://dx.doi.org/10.1002/smll.200500240
5.
5.S. Dhara, C. Y. Lu, C. T. Wu, C. W. Hsu, W. S. Tu, K. H. Chen, Y. L. Wang, L. C. Chen, and B. Raj, J. Phys. Chem. C 114, 15260 (2010).
http://dx.doi.org/10.1021/jp1020998
6.
6.S Kim and D Jang, Appl. Phys. Lett. 86, 033112 (2005).
http://dx.doi.org/10.1063/1.1856139
7.
7.L. Liu, P. Peng, A. Hu, G. Zou, W. Duley, and Y. Zhou, Appl. Phys. Lett. 102, 073107 (2013).
http://dx.doi.org/10.1063/1.4790189
8.
8.Y. Lu, J. Huang, C. Wang, S. Sun, and J. Lou, Nat. Nanotechnol. 5, 218 (2010).
http://dx.doi.org/10.1038/nnano.2010.4
9.
9.Y. Peng, T. Cullis, and B. Inkson, Nano Lett. 9, 91 (2009).
http://dx.doi.org/10.1021/nl8025339
10.
10.Z. Gu, H. Ye, A. Bernfeld, K. Livi, and D. Gracias, Langmuir 23, 979 (2007).
http://dx.doi.org/10.1021/la062813s
11.
11.J . Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, Nano Lett. 8, 2 (2008).
12.
12.H. Wu, L. B. Hu, M. W. Rowell, D. S. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, Nano Lett. 10, 4242 (2010).
http://dx.doi.org/10.1021/nl102725k
13.
13.S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, ACS Nano 3, 1767 (2009).
http://dx.doi.org/10.1021/nn900348c
14.
14.T. C. Hauger, S. M. I. Al-Rafia, and J. M. Buriak, ACS Appl. Mater. Interfaces 5, 12663 (2013).
http://dx.doi.org/10.1021/am403986f
15.
15.E. C. Garnett, W. S. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. G. Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, Nat. Mater. 11, 241 (2012).
http://dx.doi.org/10.1038/nmat3238
16.
16.J. J. Liang, L. Li, K. Tong, Z. Ren, W. Hu, X. F. Niu, Y. S. Chen, and Q. B. Pei, ACS Nano 8, 1590 (2014).
http://dx.doi.org/10.1021/nn405887k
17.
17.L. B. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, ACS Nano 4, 2955 (2010).
http://dx.doi.org/10.1021/nn1005232
18.
18.J. A. Rodríguez-Manzo, F. Banhart, M. Terrones, H. Terrones, N. Grobert, P. M. Ajayan, B. G. Sumpter, V. Meunier, M. S. Wang, Y. Bando, and D. Golberg, PNAS 106, 4591 (2009).
http://dx.doi.org/10.1073/pnas.0900960106
19.
19.T Bala, A Singh, A Sanyal, C O’Sullivan, F Laffir, C Coughlan, and K M Ryan, Nano Res. 6, 121 (2013).
http://dx.doi.org/10.1007/s12274-013-0287-9
20.
20.Z. S. Pereira and E. Z. Silva, J. Phys. Chem. C 115, 22870 (2011).
http://dx.doi.org/10.1021/jp207842v
21.
21.S. J. Plimpton, Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
22.
22.S. M. Foiles, M. L. Baskes, and M. S. Daw, Phys. Rev. B 33, 7983 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.7983
23.
23.F. M. Thomas, H. Javier, N. M. Paul, and J. W. David, Phys. Rev. B 64, 184201 (2010).
24.
24.G. J. Ackland and A. P. Jones, Phys. Rev. B 73, 054104 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.054104
25.
25.C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, Phys. Rev. B 58, 11085 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.11085
26.
26.G. Michael, R. Polina, Z. Xi, P. Inna, K. Alexander, S. Haibin, and M. Shlomo, nat. commun. 5, 2994 (2014).
27.
27.Y. Zhang, Y. H. Wen, J. C. Zheng, and Z. Z. Zhu, Phys. Lett. A 373, 3454 (2009).
http://dx.doi.org/10.1016/j.physleta.2009.07.040
28.
28.C. L. Pan, Y. Wen, and Z. Z. Zhu, J. Xiamen Univ. 46, 479 (2007).
29.
29.H. S. Park and J. A. Zimmerman, Phys. Rev. B 72, 054106 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.054106
30.
30.J. Han, L. Fang, J. P. Sun, Y. Han, and K. Sun, J. Appl. Phys. 112, 114314 (2012).
http://dx.doi.org/10.1063/1.4768284
31.
31.Y. H. Wen, Y. Zhang, Q. Wang, J. Zheng, and Z. Z. Zhu, Comp. Mater. Sci. 48, 513 (2010).
http://dx.doi.org/10.1016/j.commatsci.2010.02.015
32.
32.Y. Lu, J. Song, J. Y. Huang, and J. Lou, Nano Res. 4, 1261 (2010).
http://dx.doi.org/10.1007/s12274-011-0177-y
33.
33.Z. W. Shan, R Mishra, S. A. S. Asif, O. L. Warren, and A. M. Minor, Nat. Mater. 7, 115 (2008).
http://dx.doi.org/10.1038/nmat2085
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4921075
Loading
/content/aip/journal/adva/5/5/10.1063/1.4921075
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4921075
2015-05-29
2016-12-03

Abstract

The nanojoining process of Ag-Au hybrid nanowires at 800K was comprehensively studied by virtue of molecular dynamics (MD) simulation. Three kinds of configurations including end-to-end, T-like and X-like were built in the simulation aiming to understand the nanojoining mechanism. The detailed dynamic evolution of atoms, crystal structure transformation and defects development during the nanojoining processes were performed. The results indicate that there are two stages in the nanojoining process of Ag-Au nanowires which are atom diffusion and new bonds formation. Temperature is a key parameter affecting both stages ascribed to the energy supply and the optimum temperature for Ag-Au nanojoint with diameter of 4.08 nm has been discussed. The mechanical properties of the nanojoint were examined with simulation of tensile test on the end-to-end joint. It was revealed that the nanojoint was strong enough to resist fracture at the joining area.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4921075.html;jsessionid=fcmBftNAdaICH9Jt2cgCwfls.x-aip-live-03?itemId=/content/aip/journal/adva/5/5/10.1063/1.4921075&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4921075&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4921075'
Right1,Right2,Right3,