Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4921085
1.
1.H. A. Stone, A. D Stroock, and A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004).
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122124
2.
2.S. Ghosal, J. Fluid Mech. 459, 103 (2002).
http://dx.doi.org/10.1017/S0022112002007899
3.
3.R. Sadr, M. Yoda, Z. Zheng, and A. T. Conlisk, J. Fluid Mech. 506, 357 (2004).
http://dx.doi.org/10.1017/S0022112004008626
4.
4.S. Das and S. Chakraborty, Anal. Chim. Acta. 559, 15 (2006).
http://dx.doi.org/10.1016/j.aca.2005.11.046
5.
5.S. Chakraborty, Anal. Chim. Acta. 605, 175 (2007).
http://dx.doi.org/10.1016/j.aca.2007.10.049
6.
6.A. M. Afonso, M. A. Alves, and F. T. Pinho, J. Non-Newtonian Fluid Mech. 159, 50 (2009).
http://dx.doi.org/10.1016/j.jnnfm.2009.01.006
7.
7.Y. Jian, L. Yang, and Q. Liu, Phys. Fluids 22, 04200 (2010).
http://dx.doi.org/10.1063/1.3358473
8.
8.Q. Liu, Y. Jian, and L. Yang, Phys. fluids 23, 102001 (2011).
http://dx.doi.org/10.1063/1.3640082
9.
9.Y. Jian, Q. Liu, and L. Yang, J. Non-Newtonian Fluid Mech. 166, 1304 (2011).
http://dx.doi.org/10.1016/j.jnnfm.2011.08.009
10.
10.J. Su, Y. Jian, and L. Chang, Int. J. Heat Mass Transfer 55, 6285 (2012).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.05.056
11.
11.Y. Jian, J. Su, L. Chang, Q. Liu, and G. He, Z. Angew. Math. Phys. 65, 435 (2014).
http://dx.doi.org/10.1007/s00033-013-0341-1
12.
12.N. Pamme, Lab Chip 6, 24 (2006).
http://dx.doi.org/10.1039/B513005K
13.
13.M. A. M. Gijs, F. Lacharme, and U. Lehmann, Chem. Rev. 110, 1518 (2010).
http://dx.doi.org/10.1021/cr9001929
14.
14.N. T. Nguyen, Microfluid. Nanofluid. 12, 1 (2012).
http://dx.doi.org/10.1007/s10404-011-0903-5
15.
15.A. V. Lemoff and A. P. Lee, Sensor. Actuat. B: Chem. 63, 178 (2000).
http://dx.doi.org/10.1016/S0925-4005(00)00355-5
16.
16.J. Jang and S. S. Lee, Sensor. Actuat. B: Chem. 80, 84 (2000).
http://dx.doi.org/10.1016/S0924-4247(99)00302-7
17.
17.M. Rivero and S. Cuevas, Sensor. Actuat. B: Chem. 166–167, 884 (2012).
http://dx.doi.org/10.1016/j.snb.2012.02.050
18.
18.S. Chakraborty and D. Paul, J. Phys. D: Appl. Phys. 39, 5364 (2006).
http://dx.doi.org/10.1088/0022-3727/39/24/038
19.
19.D. Paul and S. Chakraborty, J. Appl. Phys. 102, 074921 (2007).
http://dx.doi.org/10.1063/1.2785004
20.
20.R. Chakraborty, R. Dey, and S. Chakraborty, Int. J. Heat. Mass Transfer 67, 1151 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.08.099
21.
21.S. Sarkar and S. Ganguly, Microfluid. Nanofluid.http://dx.doi.org/10.1007/s10404-014-1461-4 (2014).
http://dx.doi.org/10.1007/s10404-014-1461-4
22.
22.J. Escandón, F. Santiago, O. Bautista, and F. Méndez, Int. J. Therm. Sci. 86, 246 (2014).
http://dx.doi.org/10.1016/j.ijthermalsci.2014.07.009
23.
23.M. Buren, Y. Jian, and L. Chang, J. Phys. D: Appl. Phys. 47, 425501 (2014).
http://dx.doi.org/10.1088/0022-3727/47/42/425501
24.
24.S. Nadeem and N. S. Akbar, J. Taiwan. Inst. Chem. Eng. 41, 286 (2010).
http://dx.doi.org/10.1016/j.jtice.2009.11.004
25.
25.S. Asghar and A. Ahmada, Appl. Math. Lett. 25, 1953 (2012).
http://dx.doi.org/10.1016/j.aml.2012.03.008
26.
26.S. Das, S. Chakraborty, and S. K. Mitra, Microfluid. Nanofluid. 13, 799 (2012).
http://dx.doi.org/10.1007/s10404-012-1001-z
27.
27.M. Benelmekki, A. Montras, A. J. Martins, P. J. G. Coutinho, and L. M. Martinez, J. Magn. Magn. Mater. 323, 1945 (2011).
http://dx.doi.org/10.1016/j.jmmm.2011.02.027
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4921085
Loading
/content/aip/journal/adva/5/5/10.1063/1.4921085
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4921085
2015-05-08
2016-09-25

Abstract

As an effective driven mechanism proved experimentally, magnetohydrodynamic (MHD) micropump has attracted the attentions of many researchers in recent years. In this article, an analytical solution of EMHD velocity of an electrically conducting, incompressible and viscous fluid through a slit microchannel in presence of a lateral uniform electrical field and a spatially non-uniform vertical magnetic field is obtained by using the variation of parameter approach and Gauss numerical integration. In order to verify the validity of the exact solution, Chebyshev spectral collocation method is employed to give the numerical solutions. A very well agreement is reached when the analytical solutions are compared to those obtained by numerical simulation. The dependence of velocity profiles on Hartmann number , electrical field strength parameter and decay factor of the magnetic field is interpreted graphically in detail. In addition, the comparison of our analytical results with available experimental data is presented.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4921085.html;jsessionid=nl435vW8nsn8dXL7jVMTa4lv.x-aip-live-02?itemId=/content/aip/journal/adva/5/5/10.1063/1.4921085&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4921085&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4921085'
Right1,Right2,Right3,