Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4921088
1.
1.D. Ciazynski, Fusion Eng. Des 82, 488-497 (2007).
http://dx.doi.org/10.1016/j.fusengdes.2007.01.024
2.
2.D. Dietderich and A. Godeke, Cryogenics 48, 331-340 (2008).
http://dx.doi.org/10.1016/j.cryogenics.2008.05.004
3.
3.Y. Takahashi, T. Isono, K. Hamada, Y. Nunoya, Y. Nabara, K. Matsui, T. Hemmi, K. Kawano, N. Koizumi, M. Oshikiri, Y. Uno, F. Tsutsumi, M. Yoshikawa, H. Nakajima, K. Okuno, A. Devred, and N. Mitchell, Nuclear Fusion 51, 113015 (2011).
http://dx.doi.org/10.1088/0029-5515/51/11/113015
4.
4.Y. N. Y. Takahashi, H. Ozeki, T. Hemmi, Y. Nunoya, T. Isono, K. Matsui, K. Kawano, M. Oshikiri, Y. Uno, K. S. F. Tsutsumi, T. Kawasaki, K. Okuno, Y. Murakami, M. Tani, G. Sato, Y. Nakata, and M. Sugimoto, IEEE Trans. Appl. Supercond. 24, 4802404 (2014).
5.
5.R. Zanino, D. Ciazynski, N. Mitchell, and L. Savoldi Richard, Supercond. Sci. Technol. 18, S376 (2005).
http://dx.doi.org/10.1088/0953-2048/18/12/026
6.
6.A. Devred, C. Jong, and N. Mitchell, Supercond. Sci. Technol. 25, 054009 (2012).
http://dx.doi.org/10.1088/0953-2048/25/5/054009
7.
7.S. M. Roberto Zanino, IEEE, and Laura Savoldi Richard, IEEE Trans. Appl. Supercond. 23, 4900607 (2013).
http://dx.doi.org/10.1109/TASC.2012.2236134
8.
8.A. Nijhuis, Y. Ilyin, W. Abbas, B. Ten Haken, and H. Ten Kate, IEEE Trans. Appl. Supercond. 14, 1489-1494 (2004).
http://dx.doi.org/10.1109/TASC.2004.830666
9.
9.N. Mitchell, Supercond. Sci. Technol. 18, S396 (2005).
http://dx.doi.org/10.1088/0953-2048/18/12/029
10.
10.H. Bajas, D. Durville, D. Ciazynski, and A. Devred, IEEE Trans. Appl. Supercond. 20, 1467-1470 (2010).
http://dx.doi.org/10.1109/TASC.2010.2042944
11.
11.A. Nijhuis, R. P. P. v. Meerdervoort, H. J. G. Krooshoop, W. A. J. Wessel, C. Zhou, G. Rolando, C. Sanabria, P. J. Lee, D. C. Larbalestier, A. Devred, A. Vostner, N. Mitchell, Y. Takahashi, Y. Nabara, T. Boutboul, V. Tronza, S.-H. Park, and W. Yu, Supercond. Sci. Technol. 26, 084004 (2013).
http://dx.doi.org/10.1088/0953-2048/26/8/084004
12.
12.R. Zanino and L. Savoldi Richard, Cryogenics 46, 541-555 (2006).
http://dx.doi.org/10.1016/j.cryogenics.2006.01.007
13.
13.M.O. Hoenig and D.B. Montgomery, IEEE Trans. Mag. 11, 569572 (1975).
http://dx.doi.org/10.1109/TMAG.1975.1058601
14.
14.B. Renard, A. Martinez, J. L. Duchateau, and L. Tadrist, Cryogenics 46, 530-540 (2006).
http://dx.doi.org/10.1016/j.cryogenics.2006.02.005
15.
15.M. Lewandowska and R. Herzog, Cryogenics 51, 598-608 (2011).
http://dx.doi.org/10.1016/j.cryogenics.2011.09.003
16.
16.M. L. Robert Herzog, M. Bagnasco, M. Calvi, C. Marinucci, and P. Bruzzone, IEEE Trans. Appl. Supercond. 19, 1488-1491 (2009).
http://dx.doi.org/10.1109/TASC.2009.2018751
17.
17.N. Mitchell, Cryogenics 45, 501-515 (2005).
http://dx.doi.org/10.1016/j.cryogenics.2005.06.003
18.
18.N. Mitchell, IEEE Trans. Appl. Supercond. 15, 3572-3576 (2005).
http://dx.doi.org/10.1109/TASC.2005.849363
19.
19.H. Bajas, D. Durville, and A. Devred, Supercond. Sci. Technol. 25, 054019 (2012).
http://dx.doi.org/10.1088/0953-2048/25/5/054019
20.
20.J. Y. Zhu, W. Luo, Y. H. Zhou, and X. J. Zheng, Supercond. Sci. Technol. 25, 125011 (2012).
http://dx.doi.org/10.1088/0953-2048/25/12/125011
21.
21.S. M. Jia, D. M. Wang, and X. J. Zheng, IEEE Trans. Appl. Supercond. 24, 8400706 (2014).
22.
22.S. M. Jia, D. M. Wang, and X. J. Zheng, Physica C: Superconductivity and its Applications 508, 56-61 (2015).
http://dx.doi.org/10.1016/j.physc.2014.10.019
23.
23.A. Ninomiya, T. Inada, K. Akiba, Y. Kanda, Y. Uriu, and T. Ishigohka, IEEE Trans. Mag. 32, 3081-3084 (1996).
http://dx.doi.org/10.1109/20.511527
24.
24.R. Zanino, D. Bessette, and L. Savoldi Richard, Fusion Eng. Des 85, 752-760 (2010).
http://dx.doi.org/10.1016/j.fusengdes.2010.04.056
25.
25.H. Zhang, Q. Zhou, H. Xing, and H. Muhlhaus, Powder Technology 205, 172-183 (2011).
http://dx.doi.org/10.1016/j.powtec.2010.09.008
26.
26.T. Salmi, D. Arbelaez, S. Caspi, H. Felice, M. Mentink, S. Prestemon, A. Stenvall, and H. Ten Kate, IEEE Trans. Appl. Supercond. 24, 4701810 (2014).
28.
28.D. P. Boso, Supercond. Sci. Technol. 26, 045006 (2013).
http://dx.doi.org/10.1088/0953-2048/26/4/045006
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4921088
Loading
/content/aip/journal/adva/5/5/10.1063/1.4921088
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4921088
2015-05-08
2016-12-05

Abstract

The contact mechanical characteristics in the cross section of the Nb Sn cable are sensitive to the cryogenic cooling and cyclic transverse electromagnetic loads, which may affect the cable’s performance. In this paper, based on a proposed discrete dynamic model (DEM), where the contact heat transfer among strands and the convective heat transfer in liquid helium are taken into account, the cooling process under two heat transfer mechanisms is performed. Simulation results show that the temperature variation of Poloidal Field Insert Sample (PFIS) cable with time agrees well with the existing experimental results, and the role of contact heat transfer cannot be neglected during cryogenic cooling. It is obtained from the further analysis that the effect of contact heat transfer becomes more prominent with the decrease of mass flow rate of liquid helium, which leads to the stress status within cable changed significantly. With the temperature boundary condition imposed on the cable radial direction, the effective thermal conductivity (ETC) of cable can be obtained. It can be found that the ETC increases with increasing the transverse loads and is sensitive to the low temperature environment, while it is not affected by load cycles basically. These results may provide the guide for the design and application of the future CICC conductors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4921088.html;jsessionid=S1BvnlBlegWg8mSEr2n54DZX.x-aip-live-02?itemId=/content/aip/journal/adva/5/5/10.1063/1.4921088&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4921088&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4921088'
Right1,Right2,Right3,