Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.D. Ciazynski, Fusion Eng. Des 82, 488-497 (2007).
2.D. Dietderich and A. Godeke, Cryogenics 48, 331-340 (2008).
3.Y. Takahashi, T. Isono, K. Hamada, Y. Nunoya, Y. Nabara, K. Matsui, T. Hemmi, K. Kawano, N. Koizumi, M. Oshikiri, Y. Uno, F. Tsutsumi, M. Yoshikawa, H. Nakajima, K. Okuno, A. Devred, and N. Mitchell, Nuclear Fusion 51, 113015 (2011).
4.Y. N. Y. Takahashi, H. Ozeki, T. Hemmi, Y. Nunoya, T. Isono, K. Matsui, K. Kawano, M. Oshikiri, Y. Uno, K. S. F. Tsutsumi, T. Kawasaki, K. Okuno, Y. Murakami, M. Tani, G. Sato, Y. Nakata, and M. Sugimoto, IEEE Trans. Appl. Supercond. 24, 4802404 (2014).
5.R. Zanino, D. Ciazynski, N. Mitchell, and L. Savoldi Richard, Supercond. Sci. Technol. 18, S376 (2005).
6.A. Devred, C. Jong, and N. Mitchell, Supercond. Sci. Technol. 25, 054009 (2012).
7.S. M. Roberto Zanino, IEEE, and Laura Savoldi Richard, IEEE Trans. Appl. Supercond. 23, 4900607 (2013).
8.A. Nijhuis, Y. Ilyin, W. Abbas, B. Ten Haken, and H. Ten Kate, IEEE Trans. Appl. Supercond. 14, 1489-1494 (2004).
9.N. Mitchell, Supercond. Sci. Technol. 18, S396 (2005).
10.H. Bajas, D. Durville, D. Ciazynski, and A. Devred, IEEE Trans. Appl. Supercond. 20, 1467-1470 (2010).
11.A. Nijhuis, R. P. P. v. Meerdervoort, H. J. G. Krooshoop, W. A. J. Wessel, C. Zhou, G. Rolando, C. Sanabria, P. J. Lee, D. C. Larbalestier, A. Devred, A. Vostner, N. Mitchell, Y. Takahashi, Y. Nabara, T. Boutboul, V. Tronza, S.-H. Park, and W. Yu, Supercond. Sci. Technol. 26, 084004 (2013).
12.R. Zanino and L. Savoldi Richard, Cryogenics 46, 541-555 (2006).
13.M.O. Hoenig and D.B. Montgomery, IEEE Trans. Mag. 11, 569572 (1975).
14.B. Renard, A. Martinez, J. L. Duchateau, and L. Tadrist, Cryogenics 46, 530-540 (2006).
15.M. Lewandowska and R. Herzog, Cryogenics 51, 598-608 (2011).
16.M. L. Robert Herzog, M. Bagnasco, M. Calvi, C. Marinucci, and P. Bruzzone, IEEE Trans. Appl. Supercond. 19, 1488-1491 (2009).
17.N. Mitchell, Cryogenics 45, 501-515 (2005).
18.N. Mitchell, IEEE Trans. Appl. Supercond. 15, 3572-3576 (2005).
19.H. Bajas, D. Durville, and A. Devred, Supercond. Sci. Technol. 25, 054019 (2012).
20.J. Y. Zhu, W. Luo, Y. H. Zhou, and X. J. Zheng, Supercond. Sci. Technol. 25, 125011 (2012).
21.S. M. Jia, D. M. Wang, and X. J. Zheng, IEEE Trans. Appl. Supercond. 24, 8400706 (2014).
22.S. M. Jia, D. M. Wang, and X. J. Zheng, Physica C: Superconductivity and its Applications 508, 56-61 (2015).
23.A. Ninomiya, T. Inada, K. Akiba, Y. Kanda, Y. Uriu, and T. Ishigohka, IEEE Trans. Mag. 32, 3081-3084 (1996).
24.R. Zanino, D. Bessette, and L. Savoldi Richard, Fusion Eng. Des 85, 752-760 (2010).
25.H. Zhang, Q. Zhou, H. Xing, and H. Muhlhaus, Powder Technology 205, 172-183 (2011).
26.T. Salmi, D. Arbelaez, S. Caspi, H. Felice, M. Mentink, S. Prestemon, A. Stenvall, and H. Ten Kate, IEEE Trans. Appl. Supercond. 24, 4701810 (2014).
28.D. P. Boso, Supercond. Sci. Technol. 26, 045006 (2013).

Data & Media loading...


Article metrics loading...



The contact mechanical characteristics in the cross section of the Nb Sn cable are sensitive to the cryogenic cooling and cyclic transverse electromagnetic loads, which may affect the cable’s performance. In this paper, based on a proposed discrete dynamic model (DEM), where the contact heat transfer among strands and the convective heat transfer in liquid helium are taken into account, the cooling process under two heat transfer mechanisms is performed. Simulation results show that the temperature variation of Poloidal Field Insert Sample (PFIS) cable with time agrees well with the existing experimental results, and the role of contact heat transfer cannot be neglected during cryogenic cooling. It is obtained from the further analysis that the effect of contact heat transfer becomes more prominent with the decrease of mass flow rate of liquid helium, which leads to the stress status within cable changed significantly. With the temperature boundary condition imposed on the cable radial direction, the effective thermal conductivity (ETC) of cable can be obtained. It can be found that the ETC increases with increasing the transverse loads and is sensitive to the low temperature environment, while it is not affected by load cycles basically. These results may provide the guide for the design and application of the future CICC conductors.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd