Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, Mat. Sci. Eng. R 83, 1 (2014).
2.I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki, Nanotechnology 22, 254003 (2011).
3.R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
4.X. Guo, C. Schindler, S. Menzel, and R. Waser, Appl. Phys. Lett. 91, 133513 (2007).
5.R. Symanczyk, R. Bruchhaus, R. Dittrich, and M. Kund, IEEE Electron Device Lett. 30, 876 (2009).
6.C. Gopalan, Y. Ma, T. Gallo, J. Wang, E. Runnion, J. Saenz, F. Koushan, P. Blanchard, and S. Hollmer, Solid State Electron. 58, 54 (2011).
7.D. Kamalanathan, U. Russo, D. Ielmini, and M. N. Kozicki, IEEE Electron Device Lett. 30, 553 (2009).
8.Z. Wang, P. B. Griffin, J. McVittie, S. Wong, P. C. McIntyre, and Y. Nishi, IEEE Electron Device Lett. 28, 14 (2007).
9.H. X. Guo, L. G. Gao, Y. D. Xia, K. Jiang, B. Xu, Z. G. Liu, and J. Yin, Appl. Phys. Lett. 94, 153504 (2009).
10.R. Bruchhaus, M. Honal, R. Symanczyk, and M. Kund, J. Electrochem. Soc. 156, H729 (2009).
11.M. Kund, G. Beitel, C. U. Pinnow, T. Roehr, J. Schumann, R. Symanczyk, K. D. Ufert, and G. Mueller, Tech. Dig. – Int. Electron Devices Meet. 2005, 754.
12.N. E. Gilbert and M. N. Kozicki, IEEE J. Solid-State Circuits 42, 1383 (2007).
13.L. Chen, Z. G. Liu, Y. D. Xia, K. B. Yin, L. G. Gao, and J. Yin, Appl. Phys. Lett. 94, 162112 (2009).
14.Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, Nano Lett. 9, 1636 (2009).
15.F. Zhuge, S. S. Peng, C. L. He, X. J. Zhu, X. X. Chen, Y. W. Liu, and R. W. Li, Nanotechnology 22, 275204 (2011).
16.L. Shi, D. S. Shang, J. R. Sun, and B. G. Shen, Phys. Status Solidi RRL 4, 344 (2010).
17.Y. C. Yang, P. Gao, L. Z. Li, X. Q. Pan, S. Tappertzhofen, S. H. Choi, R. Waser, I. Valov, and W. D. Lu, Nat. Commun. 5, 4232 (2014).
18.M. N. Kozicki, C. Gopalan, M. Balakrishnan, and M. Mitkova, IEEE Trans. Nanotechnol. 5, 535 (2006).
19.C. Schindler, G. Staikov, and R. Waser, Appl. Phys. Lett. 94, 072109 (2009).
20.S. C. Puthentheradam, D. K. Schroder, and M. N. Kozicki, Appl. Phys. A 102, 817 (2011).
21.T. Sakamoto, N. Banno, N. Iguchi, H. Kawaura, H. Sunamura, S. Fujieda, K. Terabe, T. Hasegawa, and M. Aono, Dig. Tech. Pap. - Symp. VLSI Technol. 2007, 38.
22.K. Tsunoda, Y. Fukuzumi, J. R. Jameson, Z. Wang, P. B. Griffin, and Y. Nishi, Appl. Phys. Lett. 90, 113501 (2007).
23.Q. Liu, C. M. Dou, Y. Wang, S. B. Long, W. Wang, M. Liu, M. H. Zhang, and J. N. Chen, Appl. Phys. Lett. 95, 023501 (2009).
24.T. Kever, U. Bottger, C. Schindler, and R. Waser, Appl. Phys. Lett. 91, 083506 (2007).
25.X. B. Yan, Y. F. Chen, H. Hao, Q. Liu, E. P. Zhang, S. S. Shi, and J. Z. Lou, Appl. Phys. Lett. 105, 072104 (2014).
26.S. H. Jo and W. Lu, Nano Lett. 8, 392 (2008).
27.H. Chen, F. Zhuge, B. Fu, J. Li, J. Wang, W. G. Wang, Q. Wang, L. Li, F. G. Li, H. L. Zhang, L. Y. Liang, H. Luo, M. Wang, J. H. Gao, H. T. Cao, H. Zhang, and Z. C. Li, Carbon 76, 459 (2014).
28.Y. Chai, Y. Wu, K. Takei, H. Y. Chen, S. M. Yu, P. C. H. Chan, A. Javey, and H. S. P. Wong, IEEE Trans. Electron Devices 58, 3933 (2011).
29.M. Pyun, H. Choi, J. B. Park, D. Lee, M. Hasan, R. Dong, S. J. Jung, J. Lee, D. Seong, J. Yoon, and H. Hwang, Appl. Phys. Lett. 93, 212907 (2008).
30.F. Zhuge, J. Li, H. Chen, J. Wang, L. Q. Zhu, B. R. Bian, B. Fu, Q. Wang, L. Li, R. B. Pan, L. Y. Liang, H. L. Zhang, H. T. Cao, H. Zhang, Z. C. Li, J. H. Gao, and K. Li, Appl. Phys. Lett. 106, 083104 (2015).
31.B. Cho, J. M. Yun, S. Song, Y. Ji, D. Y. Kim, and T. Lee, Adv. Funct. Mater. 21, 3976 (2011).
32.S. Z. Li, F. Zeng, C. Chen, H. Y. Liu, G. S. Tang, S. Gao, C. Song, Y. S. Lin, F. Pan, and D. Guo, J. Mater. Chem. C 1, 5292 (2013).
33.Y. Hirose and H. Hirose, J. Appl. Phys. 47, 2767 (1976).
34.M. N. Kozicki and M. Mitkova, J. Non-Cryst. Solids 352, 567 (2006).
35.T. Fujii, M. Arita, Y. Takahashi, and I. Fujiwara, Appl. Phys. Lett. 98, 212104 (2011).
36.Z. Xu, Y. Bando, W. L. Wang, X. D. Bai, and D. Golberg, ACS Nano 5, 2515 (2010).
37.S. S. Peng, F. Zhuge, X. X. Chen, X. J. Zhu, B. L. Hu, L. Pan, B. Chen, and R. W. Li, Appl. Phys. Lett. 100, 072101 (2012).
38.Q. Liu, J. Sun, H. B. Lv, S. B. Long, K. B. Yin, N. Wan, Y. T. Li, L. T. Sun, and M. Liu, Adv. Mater. 24, 1844 (2012).
39.Y. C. Yang, P. Gao, S. Gaba, T. Chang, X. Q. Pan, and W. Lu, Nat. Commun. 3, 732 (2012).
40.H. T. Sun, Q. Liu, C. F. Li, S. B. Long, H. B. Lv, C. Bi, Z. L. Huo, L. Li, and M. Liu, Adv. Funct. Mater. 24, 5679 (2014).
41.X. Z. Tian, S. Z. Yang, M. Zeng, L. F. Wang, J. K. Wei, Z. Xu, W. L. Wang, and X. D. Bai, Adv. Mater. 26, 3649 (2014).
42.V. L. Gayou, B. Salazar-Hernandez, M. E. Constantino, E. R. Andres, T. Diaz, R. D. Macuil, and M. R. Lopez, Vacuum 84, 1191 (2010).
43.D. H. Hwang, J. H. Ahn, K. N. Hui, K. S. Hui, and Y. G. Son, Nanoscale Res. Lett. 7, 26 (2012).
44.J. Q. Huang, L. P. Shi, E. G. Yeo, K. J. Yi, and R. Zhao, IEEE Electron Device Lett. 33, 98 (2012).
45.L. Y. Liang, H. T. Cao, Q. Liu, K. M. Jiang, Z. M. Liu, F. Zhuge, and F. L. Deng, ACS Appl. Mater. Interfaces 6, 2255 (2014).
46.T. Tsuruoka, K. Terabe, T. Hasegawa, and M. Aono, Nanotechnology 21, 425205 (2010).
47.W. H. Guan, M. Liu, S. B. Long, Q. Liu, and W. Wang, Appl. Phys. Lett. 93, 223506 (2008).
48.S. Kundu and L. C. Olsen, Thin Solid Films 471, 298 (2005).
49.X. S. Wu, M. Sprinkle, X. B. Li, F. Ming, C. Berger, and W. A. de Heer, Phys. Rev. Lett. 101, 026801 (2008).
50.K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, J. Appl. Phys. 87, 295 (2000).
51.K. M. Kim, D. S. Jeong, and C. S. Hwang, Nanotechnology 22, 254002 (2011).
52.M. N. Kozicki, M. Balakrishnan, C. Gopalan, C. Ratnakumar, and M. Mitkova, Non-Volatile Memory Technol. Symp. Proc. 2005, 83 (2005).

Data & Media loading...


Article metrics loading...



It has been reported that in chalcogenide-based electrochemical metallization (ECM) memory cells (e.g., AsS :Ag, GeS:Cu, and Ag S), the metal filament grows from the cathode (e.g., Pt and W) towards the anode (e.g., Cu and Ag), whereas filament growth along the opposite direction has been observed in oxide-based ECM cells (e.g., ZnO, ZrO, and SiO). The growth direction difference has been ascribed to a high ion diffusion coefficient in chalcogenides in comparison with oxides. In this paper, upon analysis of OFF state characteristics of ZnS-based ECM cells, we find that the metal filament grows from the anode towards the cathode and the filament rupture and rejuvenation occur at the cathodic interface, similar to the case of oxide-based ECM cells. It is inferred that in ECM cells based on the chalcogenides such as AsS :Ag, GeS:Cu, and Ag S, the filament growth from the cathode towards the anode is due to the existence of an abundance of ready-made mobile metal ions in the chalcogenides rather than to the high ion diffusion coefficient.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd