Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4921089
1.
1.F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, Mat. Sci. Eng. R 83, 1 (2014).
http://dx.doi.org/10.1016/j.mser.2014.06.002
2.
2.I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki, Nanotechnology 22, 254003 (2011).
http://dx.doi.org/10.1088/0957-4484/22/25/254003
3.
3.R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. 21, 2632 (2009).
http://dx.doi.org/10.1002/adma.200900375
4.
4.X. Guo, C. Schindler, S. Menzel, and R. Waser, Appl. Phys. Lett. 91, 133513 (2007).
http://dx.doi.org/10.1063/1.2793686
5.
5.R. Symanczyk, R. Bruchhaus, R. Dittrich, and M. Kund, IEEE Electron Device Lett. 30, 876 (2009).
http://dx.doi.org/10.1109/LED.2009.2024623
6.
6.C. Gopalan, Y. Ma, T. Gallo, J. Wang, E. Runnion, J. Saenz, F. Koushan, P. Blanchard, and S. Hollmer, Solid State Electron. 58, 54 (2011).
http://dx.doi.org/10.1016/j.sse.2010.11.024
7.
7.D. Kamalanathan, U. Russo, D. Ielmini, and M. N. Kozicki, IEEE Electron Device Lett. 30, 553 (2009).
http://dx.doi.org/10.1109/LED.2009.2016991
8.
8.Z. Wang, P. B. Griffin, J. McVittie, S. Wong, P. C. McIntyre, and Y. Nishi, IEEE Electron Device Lett. 28, 14 (2007).
http://dx.doi.org/10.1109/LED.2006.887640
9.
9.H. X. Guo, L. G. Gao, Y. D. Xia, K. Jiang, B. Xu, Z. G. Liu, and J. Yin, Appl. Phys. Lett. 94, 153504 (2009).
http://dx.doi.org/10.1063/1.3118574
10.
10.R. Bruchhaus, M. Honal, R. Symanczyk, and M. Kund, J. Electrochem. Soc. 156, H729 (2009).
http://dx.doi.org/10.1149/1.3160570
11.
11.M. Kund, G. Beitel, C. U. Pinnow, T. Roehr, J. Schumann, R. Symanczyk, K. D. Ufert, and G. Mueller, Tech. Dig. – Int. Electron Devices Meet. 2005, 754.
12.
12.N. E. Gilbert and M. N. Kozicki, IEEE J. Solid-State Circuits 42, 1383 (2007).
http://dx.doi.org/10.1109/JSSC.2007.897172
13.
13.L. Chen, Z. G. Liu, Y. D. Xia, K. B. Yin, L. G. Gao, and J. Yin, Appl. Phys. Lett. 94, 162112 (2009).
http://dx.doi.org/10.1063/1.3123251
14.
14.Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, Nano Lett. 9, 1636 (2009).
http://dx.doi.org/10.1021/nl900006g
15.
15.F. Zhuge, S. S. Peng, C. L. He, X. J. Zhu, X. X. Chen, Y. W. Liu, and R. W. Li, Nanotechnology 22, 275204 (2011).
http://dx.doi.org/10.1088/0957-4484/22/27/275204
16.
16.L. Shi, D. S. Shang, J. R. Sun, and B. G. Shen, Phys. Status Solidi RRL 4, 344 (2010).
http://dx.doi.org/10.1002/pssr.201004364
17.
17.Y. C. Yang, P. Gao, L. Z. Li, X. Q. Pan, S. Tappertzhofen, S. H. Choi, R. Waser, I. Valov, and W. D. Lu, Nat. Commun. 5, 4232 (2014).
18.
18.M. N. Kozicki, C. Gopalan, M. Balakrishnan, and M. Mitkova, IEEE Trans. Nanotechnol. 5, 535 (2006).
http://dx.doi.org/10.1109/TNANO.2006.880407
19.
19.C. Schindler, G. Staikov, and R. Waser, Appl. Phys. Lett. 94, 072109 (2009).
http://dx.doi.org/10.1063/1.3077310
20.
20.S. C. Puthentheradam, D. K. Schroder, and M. N. Kozicki, Appl. Phys. A 102, 817 (2011).
http://dx.doi.org/10.1007/s00339-011-6292-5
21.
21.T. Sakamoto, N. Banno, N. Iguchi, H. Kawaura, H. Sunamura, S. Fujieda, K. Terabe, T. Hasegawa, and M. Aono, Dig. Tech. Pap. - Symp. VLSI Technol. 2007, 38.
22.
22.K. Tsunoda, Y. Fukuzumi, J. R. Jameson, Z. Wang, P. B. Griffin, and Y. Nishi, Appl. Phys. Lett. 90, 113501 (2007).
http://dx.doi.org/10.1063/1.2712777
23.
23.Q. Liu, C. M. Dou, Y. Wang, S. B. Long, W. Wang, M. Liu, M. H. Zhang, and J. N. Chen, Appl. Phys. Lett. 95, 023501 (2009).
http://dx.doi.org/10.1063/1.3176977
24.
24.T. Kever, U. Bottger, C. Schindler, and R. Waser, Appl. Phys. Lett. 91, 083506 (2007).
http://dx.doi.org/10.1063/1.2772191
25.
25.X. B. Yan, Y. F. Chen, H. Hao, Q. Liu, E. P. Zhang, S. S. Shi, and J. Z. Lou, Appl. Phys. Lett. 105, 072104 (2014).
http://dx.doi.org/10.1063/1.4893601
26.
26.S. H. Jo and W. Lu, Nano Lett. 8, 392 (2008).
http://dx.doi.org/10.1021/nl073225h
27.
27.H. Chen, F. Zhuge, B. Fu, J. Li, J. Wang, W. G. Wang, Q. Wang, L. Li, F. G. Li, H. L. Zhang, L. Y. Liang, H. Luo, M. Wang, J. H. Gao, H. T. Cao, H. Zhang, and Z. C. Li, Carbon 76, 459 (2014).
http://dx.doi.org/10.1016/j.carbon.2014.04.091
28.
28.Y. Chai, Y. Wu, K. Takei, H. Y. Chen, S. M. Yu, P. C. H. Chan, A. Javey, and H. S. P. Wong, IEEE Trans. Electron Devices 58, 3933 (2011).
http://dx.doi.org/10.1109/TED.2011.2164615
29.
29.M. Pyun, H. Choi, J. B. Park, D. Lee, M. Hasan, R. Dong, S. J. Jung, J. Lee, D. Seong, J. Yoon, and H. Hwang, Appl. Phys. Lett. 93, 212907 (2008).
http://dx.doi.org/10.1063/1.3039064
30.
30.F. Zhuge, J. Li, H. Chen, J. Wang, L. Q. Zhu, B. R. Bian, B. Fu, Q. Wang, L. Li, R. B. Pan, L. Y. Liang, H. L. Zhang, H. T. Cao, H. Zhang, Z. C. Li, J. H. Gao, and K. Li, Appl. Phys. Lett. 106, 083104 (2015).
http://dx.doi.org/10.1063/1.4913588
31.
31.B. Cho, J. M. Yun, S. Song, Y. Ji, D. Y. Kim, and T. Lee, Adv. Funct. Mater. 21, 3976 (2011).
http://dx.doi.org/10.1002/adfm.201101210
32.
32.S. Z. Li, F. Zeng, C. Chen, H. Y. Liu, G. S. Tang, S. Gao, C. Song, Y. S. Lin, F. Pan, and D. Guo, J. Mater. Chem. C 1, 5292 (2013).
http://dx.doi.org/10.1039/c3tc30575a
33.
33.Y. Hirose and H. Hirose, J. Appl. Phys. 47, 2767 (1976).
http://dx.doi.org/10.1063/1.322942
34.
34.M. N. Kozicki and M. Mitkova, J. Non-Cryst. Solids 352, 567 (2006).
http://dx.doi.org/10.1016/j.jnoncrysol.2005.11.065
35.
35.T. Fujii, M. Arita, Y. Takahashi, and I. Fujiwara, Appl. Phys. Lett. 98, 212104 (2011).
http://dx.doi.org/10.1063/1.3593494
36.
36.Z. Xu, Y. Bando, W. L. Wang, X. D. Bai, and D. Golberg, ACS Nano 5, 2515 (2010).
http://dx.doi.org/10.1021/nn100483a
37.
37.S. S. Peng, F. Zhuge, X. X. Chen, X. J. Zhu, B. L. Hu, L. Pan, B. Chen, and R. W. Li, Appl. Phys. Lett. 100, 072101 (2012).
http://dx.doi.org/10.1063/1.3683523
38.
38.Q. Liu, J. Sun, H. B. Lv, S. B. Long, K. B. Yin, N. Wan, Y. T. Li, L. T. Sun, and M. Liu, Adv. Mater. 24, 1844 (2012).
http://dx.doi.org/10.1002/adma.201104104
39.
39.Y. C. Yang, P. Gao, S. Gaba, T. Chang, X. Q. Pan, and W. Lu, Nat. Commun. 3, 732 (2012).
http://dx.doi.org/10.1038/ncomms1737
40.
40.H. T. Sun, Q. Liu, C. F. Li, S. B. Long, H. B. Lv, C. Bi, Z. L. Huo, L. Li, and M. Liu, Adv. Funct. Mater. 24, 5679 (2014).
http://dx.doi.org/10.1002/adfm.201401304
41.
41.X. Z. Tian, S. Z. Yang, M. Zeng, L. F. Wang, J. K. Wei, Z. Xu, W. L. Wang, and X. D. Bai, Adv. Mater. 26, 3649 (2014).
http://dx.doi.org/10.1002/adma.201400127
42.
42.V. L. Gayou, B. Salazar-Hernandez, M. E. Constantino, E. R. Andres, T. Diaz, R. D. Macuil, and M. R. Lopez, Vacuum 84, 1191 (2010).
http://dx.doi.org/10.1016/j.vacuum.2009.10.023
43.
43.D. H. Hwang, J. H. Ahn, K. N. Hui, K. S. Hui, and Y. G. Son, Nanoscale Res. Lett. 7, 26 (2012).
http://dx.doi.org/10.1186/1556-276X-7-26
44.
44.J. Q. Huang, L. P. Shi, E. G. Yeo, K. J. Yi, and R. Zhao, IEEE Electron Device Lett. 33, 98 (2012).
http://dx.doi.org/10.1109/LED.2011.2173457
45.
45.L. Y. Liang, H. T. Cao, Q. Liu, K. M. Jiang, Z. M. Liu, F. Zhuge, and F. L. Deng, ACS Appl. Mater. Interfaces 6, 2255 (2014).
http://dx.doi.org/10.1021/am4055589
46.
46.T. Tsuruoka, K. Terabe, T. Hasegawa, and M. Aono, Nanotechnology 21, 425205 (2010).
http://dx.doi.org/10.1088/0957-4484/21/42/425205
47.
47.W. H. Guan, M. Liu, S. B. Long, Q. Liu, and W. Wang, Appl. Phys. Lett. 93, 223506 (2008).
http://dx.doi.org/10.1063/1.3039079
48.
48.S. Kundu and L. C. Olsen, Thin Solid Films 471, 298 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.05.127
49.
49.X. S. Wu, M. Sprinkle, X. B. Li, F. Ming, C. Berger, and W. A. de Heer, Phys. Rev. Lett. 101, 026801 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.026801
50.
50.K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, J. Appl. Phys. 87, 295 (2000).
http://dx.doi.org/10.1063/1.371859
51.
51.K. M. Kim, D. S. Jeong, and C. S. Hwang, Nanotechnology 22, 254002 (2011).
http://dx.doi.org/10.1088/0957-4484/22/25/254002
52.
52.M. N. Kozicki, M. Balakrishnan, C. Gopalan, C. Ratnakumar, and M. Mitkova, Non-Volatile Memory Technol. Symp. Proc. 2005, 83 (2005).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4921089
Loading
/content/aip/journal/adva/5/5/10.1063/1.4921089
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4921089
2015-05-08
2016-12-02

Abstract

It has been reported that in chalcogenide-based electrochemical metallization (ECM) memory cells (e.g., AsS :Ag, GeS:Cu, and Ag S), the metal filament grows from the cathode (e.g., Pt and W) towards the anode (e.g., Cu and Ag), whereas filament growth along the opposite direction has been observed in oxide-based ECM cells (e.g., ZnO, ZrO, and SiO). The growth direction difference has been ascribed to a high ion diffusion coefficient in chalcogenides in comparison with oxides. In this paper, upon analysis of OFF state characteristics of ZnS-based ECM cells, we find that the metal filament grows from the anode towards the cathode and the filament rupture and rejuvenation occur at the cathodic interface, similar to the case of oxide-based ECM cells. It is inferred that in ECM cells based on the chalcogenides such as AsS :Ag, GeS:Cu, and Ag S, the filament growth from the cathode towards the anode is due to the existence of an abundance of ready-made mobile metal ions in the chalcogenides rather than to the high ion diffusion coefficient.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4921089.html;jsessionid=XPnmLCbS05Qeqgx1PRiaGww9.x-aip-live-02?itemId=/content/aip/journal/adva/5/5/10.1063/1.4921089&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4921089&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4921089'
Right1,Right2,Right3,