Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett. 69, 1568 (1996).
2.S. Yamaguchi, Y. Iwamura, Y. Watanabe, M. Kosaki, Y. Yukawa, S. Nitta, S. Kamiyama, H. Amano, and I. Akasaki, Appl. Phys. Lett. 80, 802 (2002).
3.R. Koester, J. Hwang, D. Salomon, X. Chen, C. Bougerol, J. Barnes, D. Dang, L. Rigutti, A. Bugallo, G. Jacopin, M. Tchernycheva, C. Durand, and J. Eymery, Nano. Lett. 11, 4839 (2011).
4.Z. Kyaw, Z. Zhang, W. Liu, S. Tan, Z. Ju, X. Zhang, Y. Ji, N. Hasanov, B. Zhu, S. Lu, Y. Zhang, J. Teng, S. Wei, and H. Demir, Appl. Phys. Lett. 104, 161113 (2014).
5.D. Kapolnek, S. Keller, R. Vetury, R. D. Underwood, P. Kozodoy, S. P. Den Baars, and U. K. Mishra, Appl. Phys. Lett. 71, 1204 (1997).
6.K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, J. Cryst. Growth 221, 316 (2000).
7.J. Park, P. A. Grudowski, C. J. Eiting, and R. D. Dupuis, Appl. Phys. Lett. 73, 333 (1998).
8.OH. Nam, T. S. Zheleva, M. D. Bremser, and R. F. Davis, J. Electron. Mater. 27, 233 (1998).
9.K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, Phys. Stat. Sol. (A) 176, 535 (1999).;2-I
10.D. Doppalapudi, S. N. Basu, K. F. Ludwig, Jr., and T. D. Moustakas, J. Appl. Phys. 84, 1389 (1998).
11.H. Fang, Z. J. Yang, Y. Wang, T. Dai, L. W. Sang, L. B. Zhao, T. J. Yu, and G. Y. Zhang, J. Appl. Phys. 103, 014908 (2008).
12.T. Yamamoto, D. Iida, Y. Kondo, M. Sowa, S. Umeda, M. Iwaya, T. Takeuchi, S. Kamiyama, and I. Akasaki, J. Cryst. Growth 393, 108 (2014).
13.B. L. Liua, M. Lachaba, A. Jiaa, A. Yoshikawaa, and K. Takahashi, J. Cryst. Growth 234, 637 (2002).
14.K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, J. Cryst. Growth 221, 316 (2000).
15.S. Srinivasan, L. Geng, R. Liu, F. A. Ponce, Y. Narukawa, and S. Tanaka, Appl. Phys. Lett. 83, 5187 (2003).
16.S. Srinivasan, M. Stevens, F. A. Ponce, and T. Mukai, Appl. Phys. Lett. 87, 131911 (2005).
17.J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu, and William J. Schaff, Appl. Phys. Lett. 80, 4741 (2002).
18.J. E. Greenspana, C. Blaauwa, B. Emmerstorfera, R. W. Glewa, and I. Shih, J. Cryst. Growth 248, 405 (2003).

Data & Media loading...


Article metrics loading...



The spatial distribution of indium composition in InGaN/GaN heterostructure is a critical topic for modulating the wavelength of light emitting diodes. In this letter, semi-polar InGaN/GaN heterostructure stripes were fabricated on patterned GaN/Sapphire substrates by epitaxial lateral overgrowth (ELO), and the spatial distribution of indium composition in the InGaN layer was characterized by using cathodoluminescence. It is found that the indium composition is mainly controlled by the diffusion behaviors of metal atoms (In and Ga) on the surface. The diffusivity of metal atoms decreases sharply as migrating to the region with a high density of dislocations and other defects, which influences the distribution of indium composition evidently. Our work is beneficial for the understanding of ELO process and the further development of InGaN/GaN heterostructure based devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd