Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.G. J. Szulczewski, S. Sanvito, and M. Coey, Nature Mater. 8, 693 (2009).
2.V. Dediu, L. Hueso, I. Bergenti, and C. Taliani, Nature Mater. 8, 707 (2009).
3.C. Barraud, P. Seneor, R. Mattana, S. Fusil, K. Bouzehouane, C. Deranlot, P. Graziosi, L. Hueso, I. Bergenti, V. Dediu, F. Petroff, and A. Fert, Nat. Phys. 6, 615 (2010).
4.M. Galbiati, S. Tatay, C. Barraud, A. V. Dediu, F. Petroff, R. Mattana, and P. Seneor, MRS Bulletin 39, 602 (2014).
5.C. Chappert, A. Fert, and F. Nguyen Van Dau, Nature Mater. 6, 813 (2007).
6.V. Dediu, M. Murgia, F. Matacotta, C. Taliani, and S. Barbanera, Solid State Commun. 122, 181 (2002).
7.Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, Nature 427, 821 (2004).
8.J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Phys. Rev. Lett. 81, 1953 (1998).
9.V. Garcia, M. Bibes, A. Barthélémy, M. Bowen, E. Jacquet, J.-P. Contour, and A. Fert, Phys. Rev. B 69, 052403 (2004).
10.Handbook of Metal Etchants, edited by P. Walker and T. W. H (CRC Press, Boca Raton (USA), 1991).
11.Nickel, Cobalt and their Alloys, edited by J. R. Davis (ASM, Russell Township (USA), 2000).
12.MEMS Materials and Processes Handbook, edited by R. Ghodssi and P. Lin (Springer, New York (USA), 2011).
13.S. Bilouk, L. Broussous, R. P. Nogueira, V. Ivanova, and C. Pernel, Microelectron. Eng. 86, 2038 (2009).
14.M. A. Caipa Campos, A. K. Trilling, M. Yang, M. Giesbers, J. Beekwilder, J. M. J. Paulusse, and H. Zuilhof, Langmuir 27, 8126 (2011).
15.L. Smardz, U. Köbler, and W. Zinn, J. Appl. Phys. 71, 5199 (1992).
16.M. Gruyters, Europhys. Lett. 64, 803 (2003).
17.See supplementary material at for XPS O1 s high-resolution spectra of Co-UHV, Co-Ox and Co-GA samples.[Supplementary Material]
18.A. Foelske and H. H. Strehblow, Surf. Interface Anal. 29, 548 (2000).;2-Q
19.J. Yang, H. Liu, W. N. Martens, and R. L. Frost, J. Phys. Chem. C 114, 111 (2010).
20.M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, and R. S. C. Smart, Appl. Surf. Sci. 257, 2717 (2011).
21.A. Ulman, Chem. Rev. 96, 1533 (1996).
22.F. Schreiber, Prog. Surf. Sci. 65, 151 (2000).
23.C. Vericat, M. E. Vela, G. A. Benitez, J. A. M. Gago, X. Torrelles, and R. C. Salvarezza, J. Phys.: Condens. Matter 18, R867 (2006).
24.M. Kind and C. Wöll, Prog. Surf. Sci. 84, 230 (2009).
25.Z. Mekhalif, J. Riga, J.-J. Pireaux, and J. Delhalle, Langmuir 13, 2285 (1997).
26.Z. Mekhalif, F. Laffineur, N. Couturier, and J. Delhalle, Langmuir 19, 637 (2003).
27.S. Bengió, M. Fonticelli, G. Benítez, A. H. Creus, P. Carro, H. Ascolani, G. Zampieri, B. Blum, and R. C. Salvarezza, J. Phys. Chem. B 109, 23450 (2005).
28.P. G. Hoertz, J. R. Niskala, P. Dai, H. T. Black, and W. You, J. Am. Chem. Soc. 130, 9763 (2008).
29.J. E. Sadler, D. S. Szumski, A. Kierzkowska, S. R. Catarelli, K. Stella, R. J. Nichols, M. H. Fonticelli, G. Benítez, B. Blum, R. C. Salvarezza, and W. Schwarzacher, Phys. Chem. Chem. Phys. 13, 17987 (2011).
30.S. Rajalingam, S. Devillers, J. Dehalle, and Z. Mekhalif, Thin Solid Films 522, 247 (2012).
31.S. Devillers, A. Hennart, J. Delhalle, and Z. Mekhalif, Langmuir 14849 (2011).
32.S. R. Catarelli, S. J. Higgins, W. Schwarzacher, B.-W. Mao, J.-W. Yan, and R. J. Nichols, Langmuir 30, 14329 (2014).
33.S. A. Dibenedetto, A. Facchetti, M. A. Ratner, and T. J. Marks, Adv. Mater. 21, 1407 (2009).
34.M. Halik and A. Hirsch, Adv. Mater. 23, 2689 (2011).
35.V. Coropceanu, J. Cornil, D. Da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Brédas, Chem. Rev. 107, 926 (2007).
36.D. Sun, E. Ehrenfreund, and Z. Valy Vardeny, Chem. Commun. 50, 1781 (2014).
37.J. Petta, S. Slater, and D. Ralph, Phys. Rev. Lett. 93, 136601 (2004).
38.W. Wang and C. Richter, Appl. Phys. Lett. 89, 153105 (2006).
39.M. Galbiati, C. Barraud, S. Tatay, K. Bouzehouane, C. Deranlot, E. Jacquet, A. Fert, P. Seneor, R. Mattana, and F. Petroff, Adv. Mater. 24, 6429 (2012).
40.S. Tatay, C. Barraud, M. Galbiati, P. Seneor, R. Mattana, K. Bouzehouane, C. Deranlot, E. Jacquet, A. Forment-Aliaga, P. Jégou, A. Fert, and F. Petroff, ACS Nano 6, 8753 (2012).

Data & Media loading...


Article metrics loading...



Organic spintronics is a new emerging field that promises to offer the full potential of chemistry to spintronics, as for example high versatility through chemical engineering and simple low cost processing. However, one key challenge that remains to be unlocked for further applications is the high incompatibility between spintronics key materials such as high Curie temperature Co, Ni, Fe (and their alloys) and wet chemistry. Indeed, the transition metal proneness to oxidation has so far hampered the integration of wet chemistry processes into the development of room temperature organic spintronics devices. As a result, they had mainly to rely on high vacuum physical processes, restraining the choice of available organic materials to a small set of sublimable molecules. In this letter, focusing on cobalt as an example, we show a wet chemistry method to easily and selectively recover a metallic surface from an air exposed oxidized surface for further integration into spintronics devices. The oxide etching process, using a glycolic acid based solution, proceeds without increasing the surface roughness and allows the retrieval of an oxygen-free chemically active cobalt layer. This unlocks the full potential of wet chemistry processes towards room temperature molecular spintronics with transition metals electrodes. We demonstrate this by the grafting of alkylthiols self-assembled monolayers on recovered oxidized cobalt surfaces.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd