Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. Geim, “Graphene: Status and Prospects,” Science. 324, 1530-1534 (2009).
2.H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109-164 (2009).
3.N. Tombros, C. Jozsa, M. Popinciuc, Ha. T. Jonkman, and B. J. Wees, “Electronic spin transport and spin precession in single graphene layers at room temperature,” Nature. 448, 571-574 (2007).
4.W. Han, K. Pi, W. Bao, K. M. M. Creary, Y. Li, W. H. Wang, C. N. Lau, and R. K. Kawakami, “Electrical detection of spin precession in single layer graphene spin valves with transparent contacts,” Appl. Phys. Lett. 94, 222109-222120 (2009).
5.W. Chen, S. Q. Qin, X. A. Zhang, S. Zhang, J. Y. Fang, G. Wang, C. C. Wang, L. Wang, and S. L. Chang, “Current induced doping in graphene-based transistor with asymmetrical contact barriers,” Appl. Phys. Lett. 104, 083115-083118 (2014).
6.W. Chen, S. Q. Qin, X. A. Zhang, S. Zhang, J. Y. Fang, G. Wang, C. C. Wang, L. Wang, and S. L. Chang, “Current self-amplification effect of graphene-based transistor in high-field transport,” Carbon. 77, 1019-1024 (2014).
7.K. Nakano, K. Hokamura, N. Taniguchi, K. Wada, C. Kudo, R. Nomura, A. Kojima, A. Amano, Y. Kamisak, T. Tanaka, K. Umemura, and T. Ooshima, “The collagen-binding protein of Streptococcus mutans is involved in haemorrhagic stroke,” J. Mater. Chem. C. 2, 4683-4692 (2014).
8.Y. X. Du, Y. Zhao, Y. Qu, C. H. Chen, C. M. Chen, C. H. Chuang, and Y. W. Zhu, “Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance SERS detection,” J. Mater. Chem. C. 2, 4683-4691 (2014).
9.M. Gao, Y. Pan, C. D. Zhang, H. Hu, R. Yang, H. L. Lu, J. M. Cai, S. X. Du, F. Liu, and H. J. Gao, “Tunable interfacial properties of epitaxial graphene on metal substrates,” Appl. Phys. Lett. 96, 053109-053112 (2011).
10.G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, “Doping Graphene with Metal Contacts,” Phys. Rev. Lett. 101, 026803-026806 (2008).
11.F. Güneş, H. J. Shin, C. D. Biswas, G. H. Han, E. S. Kim, S. J. Chae, J. Y. Choi, and Y. H. Lee, “Layer-by-Layer Doping of Few-Layer Graphene Film,” ACS Nano. 4, 4595-4600 (2010).
12.A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97, 187401-187404 (2006).
13.C. Thomsen and S. Reich, “Double Resonant Raman Scattering in Graphite,” Phys. Rev. Lett. 85, 5214-5221 (2000).
14.D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, “Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene,” Nano Lett. 7(2), 238242 (2007).
15.Z. H. Ni, T. Yu, Z. Q. Luo, Y. Y. Wang, L. Liu, C. P. Wong, J. M. Miao, W. Huang, and Z. X. Shen, “Probing Charged Impurities in Suspended Graphene Using Raman Spectroscopy,” ACS Nano. 3, 569-574 (2009).
16.Z. H. Ni, T. Yu, Z. Q. Luo, Y. Y. Wang, L. Liu, C. P. Wong, J. M. Miao, W. Huang, and Z. X. Shen, “Probing Charged Impurities in Suspended Graphene Using Raman Spectroscopy,” ACS Nano. 3, 569-574 (2009).
17.T. Yu, Z. H. Ni, C. l. Du, Y. M. You, Y. Y. Wang, and Z. X. Shen, “Raman Mapping Investigation of Graphene on Transparent Flexible Substrate: The Strain Effect,” Phys. Chem. C. 112, 12602-12605 (2008).
18.T. M. G. Mohiuddin, A. Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, N. Marzari, K. S. Novoselov, A. K. Geim, and A. C. Ferrari, “Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Güneisen parameters, and sample orientation,” Phys. Rev. B 79, 205433 (2009).
19.L. M. Malard, D. C. Elias, E. S. Alves, and M. A. Pimenta, “Observation of Distinct Electron-Phonon Couplings in Gated Bilayer Graphene,” Phys. Rev. Lett. 101, 257401-257403 (2008).
20.C. C. Wang, W. Chen, C. Han, G. Wang, B. B. Tang, C. X. Tang, Y. W, W. N. Zou, W. Chen, X. A. Zhang, S. Q. Qin, S. L. Chang, and L. Wang, “Growth of Millimeter-Size Single Crystal Graphene on Cu Foils by Circumfluence Chemical Vapor Deposition,” Sci Rep. 4, 4537-4541 (2014).
21.W. Luo, F. Wang, X. A. Zhang, Z. Z. Shao, J. Y. Fang, S. l. Chang, and S. Q. Qin, “Size Controlled Synthesis of 2-6 nm Gold Nanoparticles via Controlling Concentration of the Reducing Agent and Temperature,” Advanced Materials Research. 557-559, 572 (2012).
22.J. Y. Fang, S. Q. Qin, X. A. Zhang, G. Wang, W. Chen, Y. M. Nie, L. Fang, and S. l. Chang, “Optical Nonlinearity of Mesoporous Silica Thin Films Embedded with Gold Nanoparticles,” Chin. Opt. Lett. 9, 032401 (2011).
23.Y. Lee, S. Bae, Houk Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. Song, B. Hee Hong, and J. H. Ahn, “Wafer-Scale Synthesis and Transfer of Graphene Films,” Nano Lett. 10, 490-493 (2010).
24.W. X. Wang, S. H. Liang, T. Yu, D. H. Li, Y. B. Li, and X. F. Han, “The study of interaction between graphene and metals by Raman spectroscopy,” J. Appl. Phys. 109(7), 07C501-07c505 (2011).
25.M. Hulman, M. Haluška, G. Scalia, D. Obergfell, and S. Roth, “Effects of Charge Impurities and Laser Energy on Raman Spectra of Graphene,” Nano Lett. 8, 3594-3597 (2008).
26.W. M. H. Sachtler, G. J. H. Dorgelo, and A. A. Holscher, “The work function of gold,” Surf Sci. 5, 221-229 (1966).
27.M. Kalbac, A. R. Cecco, H. Farhat, J. Kong, L. Kavan, and M. S. Dresselhaus, “The Influence of Strong Electron and Hole Doping on the Raman Intensity of Chemical Vapor-Deposition Graphene,” ACS Nano. 4, 6055-6063 (2010).
28.A. Hoggard, L. Y. Wang, L. L. Ma, Y. Fang, G. You, Z. Liu, W. S. Chang, P. M. Ajayan, and S. Link, “Using the Plasmon Linewidth To Calculate the Time and Efficiency of Electron Transfer between Gold Nanorods and Graphene,” ACS Nano. 7, 11209-11217 (2013).
29.Z. Y. Fang, Z. Liu, Y. M. Wang, P. M. Ajayan, P. Nordlander, and N. J. Halas, “Graphene-Antenna Sandwich Photodetector,” Nano Lett. 12, 3808-3813 (2012).
30.W. Tang, Y. Kwak, W. Braunecker, N. V. Tsarevsky, M. L. Coote, and K. Matyjaszewski, “Understanding atom transfer radical polymerization: effect of ligand and initiator structures on the equilibrium constants,” J. Am. Chem. Soc. 130(32), 10702-10713 (2008).
31.A. F. Zedan, S. Sappal, S. Moussa, and M. S. El-Shall, “Ligand-Controlled Microwave Synthesis of Cubic and Hexagonal CdSe Nanocrystals Supported on Graphene. Photoluminescence Quenching by Graphene,” J. Phys. Chem. C 114(47), 19920-19927 (2010).
32.C. L. Song, B. Sun, Y. L. Wang, Y. P. Jiang, L. L. Wang, K. He, X. Chen, P. Zhang, X. C. Ma, and Q. K. Xue, “Charge-Transfer-Induced Cesium Superlattices on Graphene,” PRL. 108, 156803 (2012).
33.Z. T. Luo, L. A. Somers, Y. Dan, T. Ly, N. J. Kybert, E. J. Mele, and A. T. C. Johnson, “Size-Selective Nanoparticle Growth on Few-Layer Graphene Films,” Nano Lett. 10, 777-781 (2010).
34.S. M. Binz, M. Hupalo, X. J. Liu, C. Z. Wang, W. C. Lu, P. A. Thiel, K. M. Ho, E. H. Conrad, and M. C. Tringides, “High Island Densities and Long Range Repulsive Interactions: Fe on Epitaxial Graphene,” PRL 109, 026103-026109 (2012).
35.R. W. Havener, H. Zhuang, L. Brown, R. G. Hennig, and J. Park, “Angle-Resolved Raman Imaging of Interlayer Rotations and Interactions in Twisted Bilayer Graphene,” Nano Lett. 12, 3162-3167 (2012).
36.D. Yoon, Y. W. Son, and H. Cheong, “Strain-Dependent Splitting of the Double-Resonance Raman Scattering Band in Graphene,” Rev. Lett. 106, 155502-155506 (2011).
37.Elena del Corro, M. Taravillo, and V. G. Baonza, “Nonlinear strain effects in double-resonance Raman bands of graphite, graphene, and related materials,” Phys. Rev. B. 85, 033407-033411 (2012).
38.C. Stampfer, F. Molitor, D. Graf, K. Ensslin, A. Jungen, C. Hierold, and L. Wirtz, “Raman imaging of doping domains in graphene on SiO2,” Appl. Phys. Lett. 91, 241907-241910 (2007).
39.A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nature Nanotechnology 3, 210215 (2008).
40.T. Yu, Z. H. Ni, C. L. Du, Y. M. You, Y. Y. Wang, and Z. X. Shen, “Raman Mapping Investigation of Graphene on Transparent Flexible Substrate: The Strain Effect,” J. Phys. Chem. C. 112, 12602-12605 (2007).
41.R. Voggu, B. Das, C. S. Rout, and C. N. R. Rao, “Effects of charge transfer interaction of graphene with electron donor and acceptor molecules examined using Raman spectroscopy and cognate techniques,” J. Phys.: Condens. Matter. 20, 472204 (2008).
42.J. Lee and H. S. Shin, “Interaction between Metal and Graphene: Dependence on the Layer Number of Graphene,” ACS Nano. 5, 608-612 (2011).
43.J. Yan, Y. B. Zhang, P. Kim, and A. Pinczuk, “Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene,” Phys. Rev. Lett. 98, 166802-166805 (2007).

Data & Media loading...


Article metrics loading...



The influence of gold nanoparticles (GNPs) on graphene was studied by Raman spectroscopy. It was found that the contact of GNPs could induce the whole Raman spectrum of graphene to redshift. And the shift of the 2D peak is more obvious than that of the G peak. A model of local strain was brought forward to explain the shift of Raman spectrum, which comes from the charges transfer between the GNPs and graphene. The observation of the Raman shifts helps us to gain more physical insights into the graphene-related systems.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd