Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.G. M. Whitesides, Nature 442, 368 (2006).
2.S. Li, X. Ding, F. Guo, Y. Chen, M. I. Lapsley, S.-C. S. Lin, L. Wang, J. P. McCoy, C. E. Cameron, and T. J. Huang, Anal. Chem. 85, 5468 (2013).
3.F. Guo, P. Li, J. B. French, Z. Mao, H. Zhao, S. Li, N. Nama, J. R. Fick, S. J. Benkovic, and T. J. Huang, Proc. Nati. Acad. Sci. U.S.A. 112, 43 (2015).
4.Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, Nat. Commun. 3, 651 (2012).
5.Z. Mao, F. Guo, Y. Xie, Y. Zhao, M. I. Lapsley, L. Wang, J. D. Mai, F. Costanzo, and T. J. Huang, J. Lab. Autom. 20, 17 (2014).
6.J. Wu, W. Cao, W. Wen, D. C. Chang, and P. Sheng, Biomicrofluidics 3, 012005 (2009).
7.X. Yu, R. He, S. Li, B. Cai, L. Zhao, L. Liao, W. Liu, Q. Zeng, H. Wang, S.-S. Guo, and X.-Z. Zhao, Small 9, 3895 (2013).
8.M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, Science 288, 113 (2000).
9.A. Karimi, S. Yazdi, and A. M. Ardekani, Biomicrofluidics 7, 021501 (2013).
10.F. Guo, X.-H. Ji, K. Liu, R.-X. He, L.-B. Zhao, Z.-X. Guo, W. Liu, S.-S. Guo, and X.-Z. Zhao, Appl. Phys. Lett. 96, 193701 (2010).
11.L. Rao, B. Cai, J. Wang, Q. Meng, C. Ma, Z. He, J. Xu, Q. Huang, S. Li, Y. Cen, S. Guo, W. Liu, and X.-Z. Zhao, Sens. Actuators B 210, 328 (2015).
12.Z. Wei, X. Li, D. Zhao, H. Yan, Z. Hu, Z. Liang, and Z. Li, Anal. Chem. 86, 10215 (2014).
13.K.-Y. Lu, A. M. Wo, Y.-J. Lo, K.-C. Chen, C.-M. Lin, and C.-R. Yang, Biosens. Bioelectron. 22, 568 (2006).
14.H. Zhou and S. Yao, Lab Chip 13, 962 (2013).
15.Y.-H. Lin, G.-B. Lee, C.-W. Li, G.-R. Huang, and S.-H. Chen, J. Chromatogr. A 937, 115 (2001).
16.M. Li, W. H. Li, J. Zhang, G. Alici, and W. Wen, J. Phys. D: Appl. Phys. 47, 063001 (2014).
17.S. Li, M. Li, Y. Hui, W. Cao, W. Li, and W. Wen, Microfluid. Nanofluid. 14, 499 (2013).
18.J. Park, B. Kim, S. K. Choi, S. Hong, S. H. Lee, and K.-I. Lee, Lab Chip 5, 1264 (2005).
19.S. Numthuam, T. Kakegawa, T. Anada, A. Khademhosseini, H. Suzuki, and J. Fukuda, Sens. Actuators B 156, 637 (2011).
20.N. Lewpiriyawong and C. Yang, Biomicrofluidics 6, 012807 (2012).
21.D. Chen and H. Du, Microfluid. Nanofluid. 3, 603 (2007).
22.X. Z. Niu, S. L. Peng, L. Y. Liu, W. J. Wen, and P. Sheng, Adv. Mater. 19, 2682 (2007).
23.N. Lewpiriyawong, K. Kandaswamy, C. Yang, V. Ivanov, and R. Stocker, Anal. Chem. 83, 9579 (2011).
24.J. Voldman, M. Toner, M. L. Gray, and M. A. Schmidt, J. Electrostatics 57, 69 (2003).
25.C. Iliescu, L. Yu, F. E. H. Tay, and B. Chen, Sens. Actuators B 129, 491 (2008).
26.J.-W. Choi, S. Rosset, M. Niklaus, J. R. Adleman, H. Shea, and D. Psaltis, Lab Chip 10, 783 (2010).
27.A. C. Siegel, S. S. Shevkoplyas, D. B. Weibel, D. A. Bruzewicz, A. W. Martinez, and G. M. Whitesides, Angew. Chem. 118, 7031 (2006).
28.A. C. Siegel, D. A. Bruzewicz, D. B. Weibel, and G. M. Whitesides, Adv. Mater. 19, 727 (2007).
29.J.-C. Baret, O. J. Miller, V. Taly, M. Ryckelynck, A. El-Harrak, L. Frenz, C. Rick, M. L. Samuels, J. B. Hutchison, J. J. Agresti, D. R. Link, D. A. Weitz, and A. D. Griffiths, Lab Chip 9, 1850 (2009).
30.N. Hallfors, A. Khan, M. D. Dickey, and A. M. Taylor, Lab Chip 13, 522 (2013).
31.Y. Xia and G. M. Whitesides, Angew. Chem. Int. Ed. 37, 550 (1998).;2-G
32.X. Liu, X. Liu, J. Wang, C. Liao, X. Xiao, S. Guo, C. Jiang, Z. Fan, T. Wang, X. Chen, W. Lu, W. Hu, and L. Liao, Adv. Mater. 26, 7399 (2014).
33.K. Liu, Y. Deng, N. Zhang, S. Li, H. Ding, F. Guo, W. Liu, S. Guo, and X.-Z. Zhao, Microfluid. Nanofluid. 13, 761 (2012).
34.M. Z. Bazant and T. M. Squires, Phys. Rev. Lett. 92, 066101 (2004).
35.M. E. Leunissen, A. van Blaaderen, A. D. Hollingsworth, M. T. Sullivan, and P. M. Chaikin, Proc. Nati. Acad. Sci. U.S.A. 104, 2585 (2007).
36.W. D. Ristenpart, J. C. Bird, A. Belmonte, F. Dollar, and H. A. Stone, Nature 461, 377 (2009).
37.B. Cai, F. Guo, L. Zhao, R. He, B. Chen, Z. He, X. Yu, S. Guo, B. Xiong, W. Liu, and X.-Z Zhao, Microfluid. Nanofluid. 6, 29 (2014).
38.Q. Huang, B. Chen, R. He, Z. He, B. Cai, J. Xu, W. Qian, H. L. Chan, W. Liu, S. Guo, X.-Z. Zhao, and J. Yuan, Adv. Healthcare Mater. 3, 1420 (2014).
39.D. R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z. Cheng, G. Cristobal, M. Marquez, and D. A. Weitz, Angew. Chem. Int. Ed. 45, 2556 (2006).
40.F. Guo, M. I. Lapsley, A. A. Nawaz, Y. Zhao, S.-C. S. Lin, Y. Chen, S. Yang, X.-Z. Zhao, and T. J. Huang, Anal. Chem. 84, 10745 (2012).

Data & Media loading...


Article metrics loading...



3D microelectrodes are one-step fabricated into a microfluidic droplet separator by filling conductive silver paste into PDMS microchambers. The advantages of 3D silver paste electrodes in promoting droplet sorting accuracy are systematically demonstrated by theoretical calculation, numerical simulation and experimental validation. The employment of 3D electrodes also helps to decrease the droplet sorting voltage, guaranteeing that cells encapsulated in droplets undergo chip-based sorting processes are at better metabolic status for further potential cellular assays. At last, target droplet containing single cell are selectively sorted out from others by an appropriate electric pulse. This method provides a simple and inexpensive alternative to fabricate 3D electrodes, and it is expected our 3D electrode-integrated microfluidic droplet separator platform can be widely used in single cell operation and analysis.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd