Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4921394
1.
1.S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Appl. Phys. Lett. 67, 1868-1870 (1995).
http://dx.doi.org/10.1063/1.114359
2.
2.X. Li, S. G. Bishop, and J. J. Coleman, Appl. Phys. Lett. 73, 1179-1181 (1998).
http://dx.doi.org/10.1063/1.122121
3.
3.X. Li, S. Kim, E. E. Reuter, S. G. Bishop, and J. J. Coleman, Appl. Phys. Lett. 72, 1990-1992 (1998).
http://dx.doi.org/10.1063/1.121242
4.
4.M. Krames, O. Shchekin, R. Mueller-Mach, G. Mueller, L. Zhou et al., J. Disp. Technol. 3, 160-175 (2007).
http://dx.doi.org/10.1109/JDT.2007.895339
5.
5.I. H. Brown, P. Blood, P. M. Smowton, J. D. Thomson, S. M. Olaizola, A. M. Fox, P. J. Parbrook, and W. W. Chow, IEEE J. Quantum Electron. 42, 1202-1208 (2006).
http://dx.doi.org/10.1109/JQE.2006.883472
6.
6.M. H. Crawford, IEEE. J. Sel. Top. Quantum Electron. 15, 1028-1040 (2009).
http://dx.doi.org/10.1109/JSTQE.2009.2013476
7.
7.M. Zhang, P. Bhattacharya, and W. Guo, Appl. Phys. Lett. 97, 011103 (2010).
http://dx.doi.org/10.1063/1.3460921
8.
8.H. Zhao, G. Y. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, Opt. Express 19, A991-A1007 (2011).
http://dx.doi.org/10.1364/OE.19.00A991
9.
9.A. Laubsch, M Sabathil, J. Baur, M. Peter, and B. Hahn, IEEE Trans. Electron Devices 57, 79-87 (2010).
http://dx.doi.org/10.1109/TED.2009.2035538
10.
10.G. Y. Liu, J. Zhang, C. K. Tan, and N. Tansu, IEEE Photon. J. 5, 2201011 (2013).
http://dx.doi.org/10.1109/JPHOT.2013.2255028
11.
11.J. Zhang and N. Tansu, IEEE Photon. J. 5, 2600111 (2013).
http://dx.doi.org/10.1109/JPHOT.2013.2247587
12.
12.D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, J. Display Tech. 9, 190-198 (2013).
http://dx.doi.org/10.1109/JDT.2012.2227682
13.
13.J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, Jr., 2, 809-836 (2014).
15.
15.J. Piprek, Phys. Status Solidi A 207, 2217-2225 (2010).
http://dx.doi.org/10.1002/pssa.201026149
16.
16.M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, Appl. Phys. Lett. 91, 183507 (2007).
http://dx.doi.org/10.1063/1.2800290
17.
17.H. P. Zhao, G. Y. Liu, J. Zhang, R. A. Arif, and N. Tansu, J. Display Technol. 9, 212-225 (2013).
http://dx.doi.org/10.1109/JDT.2013.2250252
18.
18.Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, Appl. Phys. Lett. 91, 141101 (2007).
http://dx.doi.org/10.1063/1.2785135
19.
19.P. G. Eliseev, M. Osin’ski, H. Li, and I. V. Akimova, Appl. Phys. Lett. 75, 3838-3840 (1999).
http://dx.doi.org/10.1063/1.125473
20.
20.M. Zhang, P. Bhattacharya, J. Singh, and J. Hinckley, Appl. Phys. Lett. 95, 201108 (2009).
http://dx.doi.org/10.1063/1.3266520
21.
21.M. Meneghini, N. Trivellin, G. Meneghesso, and E. Zanoni, J. Appl. Phys. 106, 114508 (2009).
http://dx.doi.org/10.1063/1.3266014
22.
22.D. A. Zakheim, A. S. Pavluchenko, D. A. Bauman, K. A. Bulashevich, O. V. Khokhlev, and S. Y. Karpov, Phys. Status Solidi A 209, 456-460 (2012).
http://dx.doi.org/10.1002/pssa.201100317
23.
23.K. T. Delaney, P. Rinke, and C. G. Van de Walle, Appl. Phys. Lett. 94, 191109 (2009).
http://dx.doi.org/10.1063/1.3133359
24.
24.G. Hatakoshi and S. Nunoue, Jap. J. Appl. Phys. 52, 08JG17 (2013).
http://dx.doi.org/10.7567/JJAP.52.08JG17
25.
25.F. Bertazzi, M. Goano, and E. Bellotti, Appl. Phys. Lett. 97, 231118 (2010).
http://dx.doi.org/10.1063/1.3525605
26.
26.F. Bertazzi, X. Zhou, M. Goano, G. Ghione, and E. Bellotti, Appl. Phys. Lett. 103, 081106 (2013).
http://dx.doi.org/10.1063/1.4819129
27.
27.E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, Appl. Phys. Lett. 98, 161107 (2011).
http://dx.doi.org/10.1063/1.3570656
28.
28.A. David and M. J. Grundmann, Appl. Phys. Lett. 96, 103504 (2010).
http://dx.doi.org/10.1063/1.3330870
29.
29.J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, Phys. Rev. Lett. 110, 177406 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.177406
30.
30.C. K. Tan, J. Zhang, X. H. Li, G. Y. Liu, B. O. Tayo, and N. Tansu, J. Dis. Tech. 9, 272-279 (2013).
http://dx.doi.org/10.1109/JDT.2013.2248342
31.
31.A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Lavrinovich, Y. T. Rebane, D. V. Tarkhin, and Y. G. Shreter, Semiconductors 40, 605-610 (2006).
http://dx.doi.org/10.1134/S1063782606050162
32.
32.X. Guo and E. F. Schubert, J. Appl. Phys. 90, 4191-4195 (2001).
http://dx.doi.org/10.1063/1.1403665
33.
33.C. K. Tan and N. Tansu, AIP Adv. 5, 017219 (2015).
http://dx.doi.org/10.1063/1.4906569
34.
34.A. Kimura, C. A. Paulson, H. F. Tang, and T. F. Kuech, Appl. Phys. Lett. 84, 1489-1491 (2004).
http://dx.doi.org/10.1063/1.1652232
35.
35.R. A. Arif, H. Zhao, and N. Tansu, Appl. Phys. Lett. 92, 011104 (2008).
http://dx.doi.org/10.1063/1.2829600
36.
36.J. Wu, W Walukiewicz, K. M. Yu, J. D. Denlinger, W. Shan, J. W. Ager III, A. Kimura, H. F. tang, and T. F. Kuech, Phys. Rev. B 70, 115214 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.115214
37.
37.K. M. Yu, S. V. Novikov, R. Broesler, C. R. Staddon, M. Hawkridge, Z. Liliental-Weber, I. Demchenko, J. D. Denlinger, V. M. Kao, F. Luckert, R. W. Martin, W. Walukiewicz, and C. T. Foxon, Phys. Status Solidi C 7, 1847-1849 (2010).
http://dx.doi.org/10.1002/pssc.200983430
38.
38.A. Haug, D. Kerkhoff, and W. Lochmann, Phys. Status Solidi B 89, 357-365 (1978).
http://dx.doi.org/10.1002/pssb.2220890204
39.
39.D. B. Laks, G. F. Neumark, and S. T. Pantelides, Phys. Rev. B 42, 5176-5185 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.5176
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4921394
Loading
/content/aip/journal/adva/5/5/10.1063/1.4921394
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4921394
2015-05-15
2016-09-26

Abstract

The evaluation of Auger recombination process for dilute-As GaNAs alloy is presented. Our analysis indicates the suppression of interband Auger recombination mechanism in dilute-As GaNAs alloy in the green spectral regime. The interband Auger coefficient in dilute-As GaNAs alloy is shown as two orders of magnitude lower than that of its corresponding intraband Auger rate. Our results confirm that the second conduction band has a negligible effect on the interband Auger process in dilute-As GaNAs alloy due to the non-resonant condition of the process. Our findings show the importance of dilute-As GaNAs as an alternative visible material with low Auger recombination rates.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4921394.html;jsessionid=bCC8EEzycFkYq2tI4Eolx_Ku.x-aip-live-03?itemId=/content/aip/journal/adva/5/5/10.1063/1.4921394&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4921394&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4921394'
Right1,Right2,Right3,