Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.F. Schwierz, Nature Nanotechnology 5, 487-496 (2010).
2.P. Avouris and F. Xia, Mrs Bulletin 37, 1225-1234 (2012).
3.K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature 490, 192-200 (2012).
4.X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312-1314 (2009).
5.K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature 457, 706-710 (2009).
6.L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng, X. Bao, and H.-M. Cheng, Nat Commun 3, 699 (2012).
7.S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Nat Nano 5, 574-578 (2010).
8.W. Ren and H.-M. Cheng, Nat Nano 9, 726-730 (2014).
9.S. Park and R. S. Ruoff, Nat Nano 4, 217-224 (2009).
10.H. L. Xu, Z. Y. Zhang, R. B. Shi, H. G. Liu, Z. X. Wang, S. Wang, and L. M. Peng, Sci Rep 3, 1207 (2013).
11.L. Gao, G.-X. Ni, Y. Liu, B. Liu, A. H. Castro Neto, and K. P. Loh, Nature 505, 190-194 (2014).
12.X. Hong, A. Posadas, K. Zou, C. H. Ahn, and J. Zhu, Physical Review Letters 102, 136808 (2009).
13.Z. Liu, A. Bol, and W. Haensch, Nano Letters 11, 523-528 (2010).
14.S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. K. Banerjee, Applied Physics Letters 94, 062107 (2009).
15.F. Xia, V. Perebeinos, Y.-m. Lin, Y. Wu, and P. Avouris, Nat Nano 6, 179-184 (2011).
16.D. K. Schroder, Semiconductor and Material and Device Characterization, Third Edition ed. (John Wiley & Sons, Inc, 2005).
17.B. Huard, N. Stander, J. A. Sulpizio, and D. Goldhaber-Gordon, Phys. Rev. B 78, 121402 (2008).
18.G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, Physical Review Letters 101, 026803 (2008).
19.D. S. Novikov, Physical Review B 76, 245435 (2007).
20.D. S. Novikov, Applied Physics Letters 91, 102102 (2007).
21.Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201-204 (2005).
22.W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, Physical Review B 80, 235402 (2009).
23.V. E. Dorgan, M. H. Bae, and E. Pop, Applied Physics Letters 97, 082112 (2010).
24.J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, Nat Nano 3, 206-209 (2008).
25.L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, Science 342, 614-617 (2013).
26. Actually, at 300 K, |Vg-VDirac| is in the range from 13.2 to 50.2 V (corresponding to carrier density ranging from 1.0 × 1012 cm−2 to 3.797 × 1012 cm−2) limited by the measured voltage range.

Data & Media loading...


Article metrics loading...



Carrier mobility extraction methods for graphene based on field-effect measurements are explored and compared according to theoretical analysis and experimental results. A group of graphene devices with different channel lengths were fabricated and measured, and carrier mobility is extracted from those electrical transfer curves using three different methods. Accuracy and applicability of those methods were compared. Transfer length method (TLM) can obtain accurate density dependent mobility and contact resistance at relative high carrier density based on data from a group of devices, and then can act as a standard method to verify other methods. As two of the most popular methods, direct transconductance method (DTM) and fitting method (FTM) can extract mobility easily based on transfer curve of a sole graphene device. DTM offers an underestimated mobility at any carrier density owing to the neglect of contact resistances, and the accuracy can be improved through fabricating field-effect transistors with long channel and good contacts. FTM assumes a constant mobility independent on carrier density, and then can obtain mobility, contact resistance and residual density stimulations through fitting a transfer curve. However, FTM tends to obtain a mobility value near Dirac point and then overestimates carrier mobility of graphene. Comparing with the DTM and FTM, TLM could offer a much more accurate and carrier density dependent mobility, that reflects the complete properties of graphene carrier mobility.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd