Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4921480
1.
1.J K Furdyna, “Diluted magnetic semiconductors,” J. Appl. Phys. 64, R29 (1988).
http://dx.doi.org/10.1063/1.341700
2.
2.R V K Mangalam, N Ray, U V Waghmare, A Sundaresan, and C N R Rao, “Multiferroic properties of nanocrystalline BaTiO3,” Solid State Commun. 149, 1-5 (2009).
http://dx.doi.org/10.1016/j.ssc.2008.10.023
3.
3.D Cao, M Q Cai, W Y Hu, P Yu, and H T Huang, “Vacancy-induced magnetism in BaTiO3(001) thin films based on density functional theory,” Phys. Chem. Chem. Phys. 13, 4738-4745 (2011).
http://dx.doi.org/10.1039/c0cp02424d
4.
4.T Shimada, Y Uratani, and T Kitamura, “Vacancy-driven ferromagnetism in ferroelectric PbTiO3’,” Appl. Phys. Lett. 100, 162901 (2012).
http://dx.doi.org/10.1063/1.4704362
5.
5.K Potzger, J Osten, A A Levin, A Shalimov, G Talut, H Reuther, S Arpaci, D Burger, H Schmidt, T Nestler, and D C Meyer, “Defect-induced ferromagnetism in crystalline SrTiO3,” J. Magn. Magn. Mater. 323(11), 1551-1561 (2011).
http://dx.doi.org/10.1016/j.jmmm.2011.01.018
6.
6.Shilpi Banerjee, Anindya Datta, Asim Bhaumik, and Dipankar Chakravorty, “Multiferroic behaviour of nanoporous BaTiO3,” J. Appl. Phys. 110, 064316 (2011).
http://dx.doi.org/10.1063/1.3641639
7.
7.J M D Coey, P Stamenov, R D Gunning, M Venkatesan, and K Paul, “Ferromagnetism in defect-ridden oxides and related materials,” New. J. Phys. 12, 053025 (2010).
http://dx.doi.org/10.1088/1367-2630/12/5/053025
8.
8.Peng Zhan, Zheng Xie, Zhengcao Li, Weipeng Wang, Zhengjun Zhang, Zhuoxin Li, Guodong Cheng, Peng Zhang, Baoyi Wang, and Xingzhong Cao, “Origin of the defects-induced ferromagnetism in un-doped ZnO single crystals,” Appl. Phys. Lett. 102, 071914 (2013).
http://dx.doi.org/10.1063/1.4793574
9.
9.P Crespo, R Litra’n, T C Rojas, M Multigner, J M de la Fuente, J C Sa’nchez-Lo’pez, M A Garcı’a, A Hernando, S Penade’s, and A Ferna’ndez, “Permanent Magnetism, Magnetic Anisotropy, and Hysteresis of Thiol-Capped Gold Nanoparticles,” Phys. Rev. Lett. 93, 087204 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.087204
10.
10.Shengqiang Zhou, E. Čižmár, K. Potzger, M. Krause, G. Talut, M. Helm, J. Fassbender, S. A. Zvyagin, J. Wosnitza, and H. Schmidt, “Origin of magnetic moments in defective TiO2 single crystals,” Phys. Rev. B 79, 113201 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.113201
11.
11.Nguyen Hoa Hong, Joe Sakai, Nathalie Poirot, and Virginie Brizé, “Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films,” Phys. Rev. B 73, 132404 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.132404
12.
12.Soack Dae Yoon, Yajie Chen, Aria Yang, Trevor L Goodrich, Xu Zuo, Dario A Arena, Katherine Ziemer, Carmine Vittoria, and Vincent G Harris, “Oxygen-defect-induced magnetism to 880 K in semiconducting anatase TiO2−δ films,” J. Phys.: Condens. Matter 18, L355 (2006).
http://dx.doi.org/10.1088/0953-8984/18/27/L01
13.
13.J M D Coey, “d0 ferromagnetism,” Solid State Sci. 7(6), 660-667 (2005).
http://dx.doi.org/10.1016/j.solidstatesciences.2004.11.012
14.
14.A Sundaresan, R Bhargavi, N Rangarajan, U Siddesh, and C N R Rao, “Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides,” Phys. Rev. B 74, 161306R (2006).
http://dx.doi.org/10.1103/PhysRevB.74.161306
15.
15.N V Dang, T-L Phan, T D Thanh, V D Lam, and L V Hong, “Structural phase separation and optical and magnetic properties of BaTi1–xMnxO3 multiferroics,” Appl. Phys. Lett. 111, 113913 (2012).
16.
16.C Gruber, P O B Velazquez, J Redinger, P Mohn, and M Marsman, “p-electron magnetism in doped BaTiO3-xMx (M=C, N, B),” E. Phys. Lett. 97, 67008 (2012).
http://dx.doi.org/10.1209/0295-5075/97/67008
17.
17.K Ando, H Saito, Z Jin, T Fukumura, M Kawasaki, Y Matsumoto, and H Koinuma, “Large magneto-optical effect in an oxide diluted magnetic semiconductorZn1-xCoxO,” Appl. Phys. Lett. 78, 7200 (2001).
http://dx.doi.org/10.1063/1.1368375
18.
18.A L Ivanovskii, Phy. Uspekhi 50, 1031 (2007).
http://dx.doi.org/10.1070/PU2007v050n10ABEH006380
19.
19.Ashutosh Tiwari, Michael Snure, Dhananjay Kumar, and Jeremiah T. Abiade, “Ferromagnetism in Cu-doped ZnO films: Role of charge carriers,” Appl. Phys. Lett. 92, 062509 (2008).
http://dx.doi.org/10.1063/1.2857481
20.
20.D Chakraborti, J Narayan, and J T Prater, “Room temperature ferromagnetism in Zn1–xCuxO thin films,” Appl. Phys. Lett. 90, 062504 (2007).
http://dx.doi.org/10.1063/1.2450652
21.
21.S E Thomas Wolfram, Electronic and optical properties of d-band perovskites (Cambridge University Press, New York, 2006).
22.
22.Hyeon-Jun Lee, Bo-Seong Kim, Chae Ryong Cho, and Se-Young Jeong, “A study of magnetic and optical properties of Cu-doped ZnO,” Phys. Stat. Sol. (b) 241, 1533 (2004).
http://dx.doi.org/10.1002/pssb.200304614
23.
23.Y S Wang, P J Thomas, and P O Brien, “Optical Properties of ZnO Nanocrystals Doped with Cd, Mg, Mn, and Fe Ions,” J. Phys. Chem. B 110, 21412 (2006).
http://dx.doi.org/10.1021/jp0654415
24.
24.Ranjani Viswanatha, Sameer Sapra, Subhra Sen Gupta, B. Satpati, P. V. Satyam, B. N. Dev, and D. D. Sarma, “Synthesis and Characterization of Mn-Doped ZnO Nanocrystals,” J. Phys. Chem. B 108, 6303 (2004).
http://dx.doi.org/10.1021/jp049960o
25.
25.M Ferhat, A Zaoui, and R Ahuja, “Magnetism and band gap narrowing in Cu-doped ZnO,” Appl. Phys. Lett. 94, 142502 (2009).
http://dx.doi.org/10.1063/1.3112603
26.
26.Srinivasa Rao Singamaneni, Wu Fan, J. T. Prater, and J. Narayan, “Magnetic properties of BaTiO3/La0.7Sr0.3MnO3 thin films integrated on Si(100),” J. Appl. Phys. 116, 224104 (2014).
http://dx.doi.org/10.1063/1.4903322
27.
27.S Ramakanth and K C James Raju, “Charge transfer induced magnetism in nano crystalline BaTiO3,” Solid State Commun. 187, 59 (2014).
http://dx.doi.org/10.1016/j.ssc.2014.02.010
28.
28.E Orhan, J A Varela, A Zenatti, M F C Gurgel, F M Pontes, E R Leite, E Longo, P S Pizani, A Beltràn, and J Andrès, “Room-temperature photoluminescence of BaTiO3: Joint experimental and theoretical study,” Phys. Rev. B 71, 085113 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.085113
29.
29.Shirou Otsuki, Keishi Nishio, Tohru Kineri, Yuiichi Watanabe, and Toshio Tsuchiya, “Optical Properties of Gold-Dispersed Barium Titanate Thin Films Prepared by Sol-Gel Processing,” J. Am. Ceram. Soc. 82(7), 1676-1680 (1999).
http://dx.doi.org/10.1111/j.1151-2916.1999.tb01985.x
30.
30.Xiaoquan Zhang, Xiaohui Wang, Zhibin Tian, Tieyu Sun, and Longtu Li, “Synthesis of Monodispersed Barium Titanate Nanoparticles with Narrow Size Distribution by a Modified Alkoxide-Hydroxide Sol-Precipitation Method,” J. Am. Ceram. Soc. 93(11), 3591-3594 (2010).
http://dx.doi.org/10.1111/j.1551-2916.2010.04126.x
31.
31.Z G Hu, G S Wang, Z M Huang, and J H Chu, “Structure-related infrared optical properties of BaTiO3 thin films grown on Pt/Ti/SiO2/Si substrate,” J. Phys. Chem. Solids 64(12), 2445-2450 (2003).
http://dx.doi.org/10.1016/j.jpcs.2003.08.001
32.
32.M. Sheik-Bahae, A. A. Said, and E. W. Vanstryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14(17), 955-957 (1989).
http://dx.doi.org/10.1364/OL.14.000955
33.
33.S Venugopal Rao, T Shuvan Prashant, T Sarma, K P Pradeepta, D Swain, and S P Tewari, “Two-photon and three-photon absorption in dinaphthoporphycenes,” Chem. Phys. Lett. 514, 98-103 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.08.021
34.
34.Syed Hamad, G Krishna Podagatlapalli, Surya P Tewari, and S Venugopal Rao, “Influence of picosecond multiple/single line ablation on copper nanoparticles fabricated for surface enhanced Raman spectroscopy and photonics applications,” J. Phys. D: Appl. Phys. 46, 485501 (2013).
http://dx.doi.org/10.1088/0022-3727/46/48/485501
35.
35.M Yin, H P Li, S H Tang, and W Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B. 70(4), 587-591 (2000).
http://dx.doi.org/10.1007/s003400050866
36.
36.K Venkata Saravanan, K C James Raju, M Ghanashyam Krishna, S P Tewari, and S Venugopal Rao, “Large three-photon absorption in Ba0.5Sr0.5TiO3 films studied using Z-scan technique,” Appl. Phys. Lett. 96, 232905 (2010).
http://dx.doi.org/10.1063/1.3447930
37.
37.Ming-Sheng Zhang, Jian Yu, Junhao Chu, Qiang Chen, and Wanchun Chen, “Microstructures and photoluminescence of barium titanate nanocrystals synthesized by the hydrothermal process’,” J. Mater. Proces. Tech. 137, 78-81 (2003).
http://dx.doi.org/10.1016/S0924-0136(02)01071-3
38.
38.M. F. C. Gurgel, J. W. M. Espinosa, A. B. Campos, I. L. V. Rosa, M. R. Joya, A. G. Souza, M. A. Zaghete, P. S. Pizani, E. R. Leite, J. A. Varela, and E. Longo, “Photoluminescence of crystalline and disordered BTO:Mn powder: Experimental and theoretical modelling,” Journal of Luminescence 126, 771778 (2007).
http://dx.doi.org/10.1016/j.jlumin.2006.11.011
39.
39.Kui Woong Lee, Koppala Siva Kumar, Gaeun Heo, Maeng-Je Seong, and Jong-Won Yoon, “Characterization of hollow BaTiO3 nanofibers and intense visible Photoluminescence’,” J. Appl. Phys. 114, 134303 (2013).
http://dx.doi.org/10.1063/1.4823988
40.
40.Natheer B. Mahmood and Emad K. Al-Shakarchi, “Three Techniques Used to Produce BaTiO3 Fine Powder’,” J. Mod. Phys. 2, 1420-1428 (2011).
http://dx.doi.org/10.4236/jmp.2011.211175
41.
41.S. Venugopal Rao, “Picosecond nonlinear optical studies of gold nanoparticles synthesised using coriander leaves (Coriandrum sativum),” J. Mod. Opt. 58, 1024 (2011).
http://dx.doi.org/10.1080/09500340.2011.590903
42.
42.S. Hamad, S. P. Tewari, L. Giribabu, and S. Venugopal Rao, “Picosecond and Femtosecond Optical Nonlinearities of Novel Corroles,” J. Porphy. Phth. 16, 140 (2012).
http://dx.doi.org/10.1142/S108842461200446X
43.
43.G. Krishna Podagatlapalli, Syed Hamad, Surya P. Tewari, S. Sreedhar, Muvva D. Prasad, and S. Venugopal Rao, “Silver nano-entities through ultrafast double ablation in aqueous media for surface enhanced Raman scattering and photonics applications,” J. Appl. Phys. 113, 073106 (2013).
http://dx.doi.org/10.1063/1.4792483
44.
44.R Le Harzic, D Dörr, D Sauer, F Stracke, and H Zimmermann, “Generation of high spatial frequency ripples on silicon under ultrashort laser pulses irradiation,” Appl. Phys. Lett. 98, 211905 (2011).
http://dx.doi.org/10.1063/1.3593493
45.
45.K Sokolowski-Tinten and D Von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.2643
46.
46.T Kolodiazhnyi, “Insulator-metal transition and anomalous sign reversal of the dominant charge carriers in perovskite BaTiO3–δ,” Phy. Rev. B 78, 045107 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.045107
47.
47.Soonil Lee, Gaiying Yang, Rudeger H. T. Wilke, Susan Trolier-McKinstry, and Clive A. Randall, “Thermopower in highly reduced n-type ferroelectric and related perovskite oxides and the role of heterogeneous nonstoichiometry,” Phys. Rev. B 79, 134110 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.134110
48.
48.Soonil Lee, Jonathan A. Bock, Susan Trolier-McKinstry, and Clive A. Randall, “Ferroelectric-thermoelectricity and Mott transition of ferroelectric oxides with high electronic conductivity,” J. Eur. Ceram. Soc. 32(16), 3971-3988 (2012).
http://dx.doi.org/10.1016/j.jeurceramsoc.2012.06.007
49.
49.S Ramakanth and K C James Raju, “Band gap narrowing in BaTiO3 nanoparticles facilitated by multiple mechanisms,” J. Appl. Phys. 115, 173507 (2014).
http://dx.doi.org/10.1063/1.4871776
50.
50.B R Bennett, R A Soref, and J A D Alamo, “Carrier-induced change in refractive index of InP, GaAs and InGaAsP,” IEEE J. Quantum. Elect. 26, 113 (1990).
http://dx.doi.org/10.1109/3.44924
51.
51.J G M Alvarez, F D Nunes, and N B Patel, “Refractive index dependence on free carriers for GaAs,” J. Appl. Phys. 51, 4365 (1980).
http://dx.doi.org/10.1063/1.328298
52.
52.Weitian Wang, Liangsheng Qu, Guang Yang, and Zhenghao Chen, “Large third-order optical nonlinearity in BaTiO3 matrix-embedded metal nanoparticles,” Appl. Surf. Sci. 218, 24-28 (2003).
http://dx.doi.org/10.1016/S0169-4332(03)00587-7
53.
53.Litty Irimpan, A. Deepthy, Bindu Krishnan, L. M. Kukreja, V. P. N. Nampoori, and P. Radhakrishnan, “Effect of self assembly on the nonlinear optical characteristics of ZnO thin films,” Opt. Commun. 281(10), 2938-2943 (2008).
http://dx.doi.org/10.1016/j.optcom.2008.01.029
54.
54.Chinmay Phadnis, Darshana Y. Inamdar, Igor Dubenko, Arjun Pathak, Naushad Ali, and Shailaja Mahamuni, “Ferromagnetic ZnO nanocrystals and Al-induced defects,” J. Appl. Phys. 110, 114316 (2011).
http://dx.doi.org/10.1063/1.3665637
55.
55.Tandra Ghoshal, Tuhin Maity, Ramsankar Senthamaraikannan, Matthew T. Shaw, Patrick Carolan, Justin D. Holmes, Saibal Roy, and Michael A. Morris, “Size and space controlled hexagonal arrays of superparamagnetic iron oxide nanodots: magnetic studies and application,” Sci. Reports 3, 2772 (2013).
56.
56.Ying Zhang and S. Das Sarma, “Temperature and magnetization-dependent band-gap renormalization and optical many-body effects in diluted magnetic semiconductors,” Phys. Rev. B 72, 125303 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.125303
57.
57.Wei Qin, Xiaoguang Li, Yi Xie, and Zhenyu Zhang, “Reentrant paramagnetism induced by drastic reduction of magnetic couplings at surfaces of superparamagnetic nanoparticles,” Phys. Rev. B 90, 224416 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.224416
58.
58.Y. H. Matsuda, T. Ikaida, N. Miura, S. Kuroda, F. Takano, and K. Takita, “Effective mass of conduction electrons in Cd1–xMnxTe,” Phys. Rev. B 65, 115202 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.115202
59.
59.P M Hui, H Ehrenreich, and K C Hass, “Effects of d bands on semiconductor sp Hamiltonians,” Phys. Rev. B 40, 12346 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.12346
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4921480
Loading
/content/aip/journal/adva/5/5/10.1063/1.4921480
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4921480
2015-05-20
2016-12-06

Abstract

In our earlier studies the BaTiO samples were processed at higher temperatures like 1000oC and explained the observed magnetism in it. It is found that the charge transfer effects are playing crucial role in explaining the observed ferromagnetism in it. In the present work the samples were processed at lower temperatures like 650oC-800oC. The carrier densities in these particles were estimated to be ∼ 1019-1020/cm3 range. The band gap is in the range of 2.53eV to 3.2eV. It is observed that magnetization increased with band gap narrowing. The higher band gap narrowed particles exhibited increased magnetization with a higher carrier density of 1.23×1020/cm3 near to the Mott critical density. This hint the exchange interactions between the carriers play a dominant role in deciding the magnetic properties of these particles. The increase in charge carrier density in this undoped BaTiO is because of oxygen defects only. The oxygen vacancy will introduce electrons in the system and hence more charge carriers means more oxygen defects in the system and increases the exchange interactions between Ti3+, Ti4+, hence high magnetic moment. The coercivity is increased from 23 nm to 31 nm and then decreased again for higher particle size of 54 nm. These particles do not show photoluminescence property and hence it hints the absence of uniformly distributed distorted [TiO5]-[TiO6] clusters formation and charge transfer between them. Whereas these charge transfer effects are vital in explaining the observed magnetism in high temperature processed samples. Thus the variation of magnetic properties like magnetization, coercivity with band gap narrowing, particle size and charge carrier density reveals the super paramagnetic nature of BaTiO nanoparticles. The nonlinear optical coefficients extracted from Z-scan studies suggest that these are potential candidates for optical imaging and signal processing applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4921480.html;jsessionid=kDMWbUegduY0DjnzIJKdqN_0.x-aip-live-06?itemId=/content/aip/journal/adva/5/5/10.1063/1.4921480&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4921480&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4921480'
Right1,Right2,Right3,