Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4921519
1.
1.A. K. Geim and K. S. Novoselov, Nat Mater 6(3), 183-191 (2007).
http://dx.doi.org/10.1038/nmat1849
2.
2.K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature 490, 192-200 (2012).
http://dx.doi.org/10.1038/nature11458
3.
3.P. G. Klemens, International Journal of Thermophysics 22(1), 265-275 (2001).
http://dx.doi.org/10.1023/A:1006776107140
4.
4.D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, Phys Rev B 79, 155413 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.155413
5.
5.L. Lindsay, D. A. Broido, and N. Mingo, Phys Rev B 83, 235428 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.235428
6.
6.A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett 8(3), 902-907 (2008).
http://dx.doi.org/10.1021/nl0731872
7.
7.C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R. R. Nair, and A. K. Geim, Acs Nano 4(4), 1889-1892 (2010).
http://dx.doi.org/10.1021/nn9016229
8.
8.W. W. Cai, A. L. Moore, Y. W. Zhu, X. S. Li, S. S. Chen, L. Shi, and R. S. Ruoff, Nano Letters 10(5), 1645-1651 (2010).
http://dx.doi.org/10.1021/nl9041966
9.
9.S. Ghosh, W. Z. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Nat Mater 9(7), 555-558 (2010).
http://dx.doi.org/10.1038/nmat2753
10.
10.J. U. Lee, D. Yoon, H. Kim, S. W. Lee, and H. Cheong, Phys Rev B 83, 081419 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.081419
11.
11.S. S. Chen, A. L. Moore, W. W. Cai, J. W. Suk, J. H. An, C. Mishra, C. Amos, C. W. Magnuson, J. Y. Kang, L. Shi, and R. S. Ruoff, ACS Nano 5(1), 321-328 (2011).
http://dx.doi.org/10.1021/nn102915x
12.
12.J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. S. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S. Ruoff, and L. Shi, Science 328, 213-216 (2010).
http://dx.doi.org/10.1126/science.1184014
13.
13.W. Y. Jang, Z. Chen, W. Z. Bao, C. N. Lau, and C. Dames, Nano Lett 10(10), 3909-3913 (2010).
http://dx.doi.org/10.1021/nl101613u
14.
14.Z. Q. Wang, R. G. Xie, C. T. Bui, D. Liu, X. X. Ni, B. W. Li, and J. T. L. Thong, Nano Lett 11(1), 113-118 (2011).
http://dx.doi.org/10.1021/nl102923q
15.
15.M. T. Pettes, I. S. Jo, Z. Yao, and L. Shi, Nano Letters 11(3), 1195-1200 (2011).
http://dx.doi.org/10.1021/nl104156y
16.
16.W. Jang, W. Bao, L. Jing, C. N. Lau, and C. Dames, Appl Phys Lett 103, 133102 (2013).
http://dx.doi.org/10.1063/1.4821941
17.
17.J. Wang, L. Zhu, J. Chen, B. Li, and J. T. L. Thong, Advanced Materials 25(47), 6884-6888 (2013).
http://dx.doi.org/10.1002/adma.201303362
18.
18.M. M. Sadeghi, I. Jo, and L. Shi, P Natl Acad Sci USA 110(41), 16321-16326 (2013).
http://dx.doi.org/10.1073/pnas.1306175110
19.
19.X. F. Xu, L. F. C. Pereira, Y. Wang, J. Wu, K. W. Zhang, X. M. Zhao, S. Bae, C. T. Bui, R. G. Xie, J. T. L. Thong, B. H. Hong, K. P. Loh, D. Donadio, B. W. Li, and B. Ozyilmaz, Nat Commun 5, 3689 (2014).
20.
20.C. X. Yu and G. Zhang, J Appl Phys 113, 214304 (2013).
http://dx.doi.org/10.1063/1.4809554
21.
21.J. Maassen and M. Lundstrom, Journal of Applied Physics 117(3), 035104 (2015).
http://dx.doi.org/10.1063/1.4905590
22.
22.X. Xu, Y. Wang, K. Zhang, X. Zhao, S. Bae, M. Heinrich, C. T. Bui, R. Xie, J. T. L. Thong, B. H. Hong, K. P. Loh, B. W. Li, and B. Oezyilmaz, arxiv:1012.2937 (2010).
23.
23.S. Datta, Electronic transport in mesoscopic systems (Cambridge University Press, Cambridge ; New York, 1995).
24.
24.C. H. Yu, L. Shi, Z. Yao, D. Y. Li, and A. Majumdar, Nano Lett 5(9), 1842-1846 (2005).
http://dx.doi.org/10.1021/nl051044e
25.
25.G. Chen, Nanoscale energy transport and conversion : a parallel treatment of electrons, molecules, phonons, and photons (Oxford University Press, New York, 2005).
26.
26.J. M. Ziman, Electrons and phonons : the theory of transport phenomena in solids (Clarendon Press, Oxford, 1962).
27.
27.T.-K. Hsiao, H.-K. Chang, S.-C. Liou, M.-W. Chu, S.-C. Lee, and C.-W. Chang, Nat Nano 8(7), 534-538 (2013).
http://dx.doi.org/10.1038/nnano.2013.121
28.
28.F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Fundamentals of heat and mass transfer, 6th ed. (John Wiley, Hoboken, NJ, 2007).
29.
29.C. H. Yu, S. Saha, J. H. Zhou, L. Shi, A. M. Cassell, B. A. Cruden, Q. Ngo, and J. Li, J Heat Trans-T Asme 128(3), 234-239 (2006).
http://dx.doi.org/10.1115/1.2150833
30.
30.M. T. Pettes and L. Shi, Adv Funct Mater 19(24), 3918-3925 (2009).
http://dx.doi.org/10.1002/adfm.200900932
31.
31.I. Jo, M. T. Pettes, J. Kim, K. Watanabe, T. Taniguchi, Z. Yao, and L. Shi, Nano Lett 13(2), 550-554 (2013).
http://dx.doi.org/10.1021/nl304060g
32.
32.I. Jo, M. T. Pettes, E. Ou, W. Wu, and L. Shi, Appl Phys Lett 104, 201902 (2014).
http://dx.doi.org/10.1063/1.4876965
33.
33.Z. Chen, W. Jang, W. Bao, C. N. Lau, and C. Dames, Appl Phys Lett 95, 161910 (2009).
http://dx.doi.org/10.1063/1.3245315
34.
34.Y. K. Koh, M. H. Bae, D. G. Cahill, and E. Pop, Nano Lett 10(11), 4363-4368 (2010).
http://dx.doi.org/10.1021/nl101790k
35.
35.K. F. Mak, C. H. Lui, and T. F. Heinz, Appl Phys Lett 97, 221904 (2010).
http://dx.doi.org/10.1063/1.3511537
36.
36.C. C. Chen, Z. Li, L. Shi, and S. B. Cronin, Appl Phys Lett 104, 081908 (2014).
http://dx.doi.org/10.1063/1.4866335
37.
37.A. Weathers, Z. U. Khan, R. Brooke, D. Evans, M. T. Pettes, J. W. Andreasen, X. Crispin, and L. Shi, Advanced Materials 27(12), 2101-2106 (2015).
http://dx.doi.org/10.1002/adma.201404738
38.
38.Y. C. Lin, C. C. Lu, C. H. Yeh, C. H. Jin, K. Suenaga, and P. W. Chiu, Nano Lett 12(1), 414-419 (2012).
http://dx.doi.org/10.1021/nl203733r
39.
39.E. H. Lock, M. Baraket, M. Laskoski, S. P. Mulvaney, W. K. Lee, P. E. Sheehan, D. R. Hines, J. T. Robinson, J. Tosado, M. S. Fuhrer, S. C. Hernandez, and S. G. Waltont, Nano Lett 12(1), 102-107 (2012).
http://dx.doi.org/10.1021/nl203058s
40.
40.A. M. Goossens, V. E. Calado, A. Barreiro, K. Watanabe, T. Taniguchi, and L. M. K. Vandersypen, Appl Phys Lett 100, 073110 (2012).
http://dx.doi.org/10.1063/1.3685504
41.
41.X. L. Liang, B. A. Sperling, I. Calizo, G. J. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. L. Peng, Q. L. Li, X. X. Zhu, H. Yuan, A. R. H. Walker, Z. F. Liu, L. M. Peng, and C. A. Richter, Acs Nano 5(11), 9144-9153 (2011).
http://dx.doi.org/10.1021/nn203377t
42.
42.M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, Nano Lett 7(6), 1643-1648 (2007).
http://dx.doi.org/10.1021/nl070613a
43.
43.C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nat. Nanotechnol. 5(10), 722-726 (2010).
http://dx.doi.org/10.1038/nnano.2010.172
44.
44.S. Ryu, L. Liu, S. Berciaud, Y. J. Yu, H. T. Liu, P. Kim, G. W. Flynn, and L. E. Brus, Nano Lett 10(12), 4944-4951 (2010).
http://dx.doi.org/10.1021/nl1029607
45.
45.P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen, and D. A. Muller, Nature 469, 389 (2011).
http://dx.doi.org/10.1038/nature09718
46.
46.J. S. Park, A. Reina, R. Saito, J. Kong, G. Dresselhaus, and M. S. Dresselhaus, Carbon 47(5), 1303-1310 (2009).
http://dx.doi.org/10.1016/j.carbon.2009.01.009
47.
47.S. Berciaud, S. Ryu, L. E. Brus, and T. F. Heinz, Nano Lett 9(1), 346-352 (2009).
http://dx.doi.org/10.1021/nl8031444
48.
48.Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, New York, IFI/Plenum (1970).
49.
49.Z. Wang and N. Mingo, Appl Phys Lett 99, 101903 (2011).
http://dx.doi.org/10.1063/1.3635394
50.
50.R. Prasher, Appl Phys Lett 94, 041905 (2009).
http://dx.doi.org/10.1063/1.3075065
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4921519
Loading
/content/aip/journal/adva/5/5/10.1063/1.4921519
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4921519
2015-05-18
2016-09-30

Abstract

Thermal transport in suspended graphene samples has been measured in prior works and this work with the use of a suspended electro-thermal micro-bridge method. These measurement results are analyzed here to evaluate and eliminate the errors caused by the extrinsic thermal contact resistance. It is noted that the room-temperature thermal resistance measured in a recent work increases linearly with the suspended length of the single-layer graphene samples synthesized by chemical vapor deposition (CVD), and that such a feature does not reveal the failure of Fourier’s law despite the increase in the reported apparent thermal conductivity with length. The re-analyzed apparent thermal conductivity of a single-layer CVD graphene sample reaches about 1680 ± 180 W m−1 K−1 at room temperature, which is close to the highest value reported for highly oriented pyrolytic graphite. In comparison, the apparent thermal conductivity values measured for two suspended exfoliated bi-layer graphene samples are about 880 ± 60 and 730 ± 60 Wm−1K−1 at room temperature, and approach that of the natural graphite source above room temperature. However, the low-temperature thermal conductivities of these suspended graphene samples are still considerably lower than the graphite values, with the peak thermal conductivities shifted to much higher temperatures. Analysis of the thermal conductivity data reveals that the low temperature behavior is dominated by phonon scattering by polymer residue instead of by the lateral boundary.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4921519.html;jsessionid=fAIvYfc91rg9_96zvOGDndbp.x-aip-live-06?itemId=/content/aip/journal/adva/5/5/10.1063/1.4921519&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4921519&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4921519'
Right1,Right2,Right3,