Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. K. Geim and K. S. Novoselov, Nat Mater 6(3), 183-191 (2007).
2.K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature 490, 192-200 (2012).
3.P. G. Klemens, International Journal of Thermophysics 22(1), 265-275 (2001).
4.D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, Phys Rev B 79, 155413 (2009).
5.L. Lindsay, D. A. Broido, and N. Mingo, Phys Rev B 83, 235428 (2011).
6.A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett 8(3), 902-907 (2008).
7.C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R. R. Nair, and A. K. Geim, Acs Nano 4(4), 1889-1892 (2010).
8.W. W. Cai, A. L. Moore, Y. W. Zhu, X. S. Li, S. S. Chen, L. Shi, and R. S. Ruoff, Nano Letters 10(5), 1645-1651 (2010).
9.S. Ghosh, W. Z. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Nat Mater 9(7), 555-558 (2010).
10.J. U. Lee, D. Yoon, H. Kim, S. W. Lee, and H. Cheong, Phys Rev B 83, 081419 (2011).
11.S. S. Chen, A. L. Moore, W. W. Cai, J. W. Suk, J. H. An, C. Mishra, C. Amos, C. W. Magnuson, J. Y. Kang, L. Shi, and R. S. Ruoff, ACS Nano 5(1), 321-328 (2011).
12.J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. S. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S. Ruoff, and L. Shi, Science 328, 213-216 (2010).
13.W. Y. Jang, Z. Chen, W. Z. Bao, C. N. Lau, and C. Dames, Nano Lett 10(10), 3909-3913 (2010).
14.Z. Q. Wang, R. G. Xie, C. T. Bui, D. Liu, X. X. Ni, B. W. Li, and J. T. L. Thong, Nano Lett 11(1), 113-118 (2011).
15.M. T. Pettes, I. S. Jo, Z. Yao, and L. Shi, Nano Letters 11(3), 1195-1200 (2011).
16.W. Jang, W. Bao, L. Jing, C. N. Lau, and C. Dames, Appl Phys Lett 103, 133102 (2013).
17.J. Wang, L. Zhu, J. Chen, B. Li, and J. T. L. Thong, Advanced Materials 25(47), 6884-6888 (2013).
18.M. M. Sadeghi, I. Jo, and L. Shi, P Natl Acad Sci USA 110(41), 16321-16326 (2013).
19.X. F. Xu, L. F. C. Pereira, Y. Wang, J. Wu, K. W. Zhang, X. M. Zhao, S. Bae, C. T. Bui, R. G. Xie, J. T. L. Thong, B. H. Hong, K. P. Loh, D. Donadio, B. W. Li, and B. Ozyilmaz, Nat Commun 5, 3689 (2014).
20.C. X. Yu and G. Zhang, J Appl Phys 113, 214304 (2013).
21.J. Maassen and M. Lundstrom, Journal of Applied Physics 117(3), 035104 (2015).
22.X. Xu, Y. Wang, K. Zhang, X. Zhao, S. Bae, M. Heinrich, C. T. Bui, R. Xie, J. T. L. Thong, B. H. Hong, K. P. Loh, B. W. Li, and B. Oezyilmaz, arxiv:1012.2937 (2010).
23.S. Datta, Electronic transport in mesoscopic systems (Cambridge University Press, Cambridge ; New York, 1995).
24.C. H. Yu, L. Shi, Z. Yao, D. Y. Li, and A. Majumdar, Nano Lett 5(9), 1842-1846 (2005).
25.G. Chen, Nanoscale energy transport and conversion : a parallel treatment of electrons, molecules, phonons, and photons (Oxford University Press, New York, 2005).
26.J. M. Ziman, Electrons and phonons : the theory of transport phenomena in solids (Clarendon Press, Oxford, 1962).
27.T.-K. Hsiao, H.-K. Chang, S.-C. Liou, M.-W. Chu, S.-C. Lee, and C.-W. Chang, Nat Nano 8(7), 534-538 (2013).
28.F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Fundamentals of heat and mass transfer, 6th ed. (John Wiley, Hoboken, NJ, 2007).
29.C. H. Yu, S. Saha, J. H. Zhou, L. Shi, A. M. Cassell, B. A. Cruden, Q. Ngo, and J. Li, J Heat Trans-T Asme 128(3), 234-239 (2006).
30.M. T. Pettes and L. Shi, Adv Funct Mater 19(24), 3918-3925 (2009).
31.I. Jo, M. T. Pettes, J. Kim, K. Watanabe, T. Taniguchi, Z. Yao, and L. Shi, Nano Lett 13(2), 550-554 (2013).
32.I. Jo, M. T. Pettes, E. Ou, W. Wu, and L. Shi, Appl Phys Lett 104, 201902 (2014).
33.Z. Chen, W. Jang, W. Bao, C. N. Lau, and C. Dames, Appl Phys Lett 95, 161910 (2009).
34.Y. K. Koh, M. H. Bae, D. G. Cahill, and E. Pop, Nano Lett 10(11), 4363-4368 (2010).
35.K. F. Mak, C. H. Lui, and T. F. Heinz, Appl Phys Lett 97, 221904 (2010).
36.C. C. Chen, Z. Li, L. Shi, and S. B. Cronin, Appl Phys Lett 104, 081908 (2014).
37.A. Weathers, Z. U. Khan, R. Brooke, D. Evans, M. T. Pettes, J. W. Andreasen, X. Crispin, and L. Shi, Advanced Materials 27(12), 2101-2106 (2015).
38.Y. C. Lin, C. C. Lu, C. H. Yeh, C. H. Jin, K. Suenaga, and P. W. Chiu, Nano Lett 12(1), 414-419 (2012).
39.E. H. Lock, M. Baraket, M. Laskoski, S. P. Mulvaney, W. K. Lee, P. E. Sheehan, D. R. Hines, J. T. Robinson, J. Tosado, M. S. Fuhrer, S. C. Hernandez, and S. G. Waltont, Nano Lett 12(1), 102-107 (2012).
40.A. M. Goossens, V. E. Calado, A. Barreiro, K. Watanabe, T. Taniguchi, and L. M. K. Vandersypen, Appl Phys Lett 100, 073110 (2012).
41.X. L. Liang, B. A. Sperling, I. Calizo, G. J. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. L. Peng, Q. L. Li, X. X. Zhu, H. Yuan, A. R. H. Walker, Z. F. Liu, L. M. Peng, and C. A. Richter, Acs Nano 5(11), 9144-9153 (2011).
42.M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, Nano Lett 7(6), 1643-1648 (2007).
43.C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nat. Nanotechnol. 5(10), 722-726 (2010).
44.S. Ryu, L. Liu, S. Berciaud, Y. J. Yu, H. T. Liu, P. Kim, G. W. Flynn, and L. E. Brus, Nano Lett 10(12), 4944-4951 (2010).
45.P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen, and D. A. Muller, Nature 469, 389 (2011).
46.J. S. Park, A. Reina, R. Saito, J. Kong, G. Dresselhaus, and M. S. Dresselhaus, Carbon 47(5), 1303-1310 (2009).
47.S. Berciaud, S. Ryu, L. E. Brus, and T. F. Heinz, Nano Lett 9(1), 346-352 (2009).
48.Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, New York, IFI/Plenum (1970).
49.Z. Wang and N. Mingo, Appl Phys Lett 99, 101903 (2011).
50.R. Prasher, Appl Phys Lett 94, 041905 (2009).

Data & Media loading...


Article metrics loading...



Thermal transport in suspended graphene samples has been measured in prior works and this work with the use of a suspended electro-thermal micro-bridge method. These measurement results are analyzed here to evaluate and eliminate the errors caused by the extrinsic thermal contact resistance. It is noted that the room-temperature thermal resistance measured in a recent work increases linearly with the suspended length of the single-layer graphene samples synthesized by chemical vapor deposition (CVD), and that such a feature does not reveal the failure of Fourier’s law despite the increase in the reported apparent thermal conductivity with length. The re-analyzed apparent thermal conductivity of a single-layer CVD graphene sample reaches about 1680 ± 180 W m−1 K−1 at room temperature, which is close to the highest value reported for highly oriented pyrolytic graphite. In comparison, the apparent thermal conductivity values measured for two suspended exfoliated bi-layer graphene samples are about 880 ± 60 and 730 ± 60 Wm−1K−1 at room temperature, and approach that of the natural graphite source above room temperature. However, the low-temperature thermal conductivities of these suspended graphene samples are still considerably lower than the graphite values, with the peak thermal conductivities shifted to much higher temperatures. Analysis of the thermal conductivity data reveals that the low temperature behavior is dominated by phonon scattering by polymer residue instead of by the lateral boundary.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd