Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4921561
1.
1.C. Alkan, A. Sarı, A. Karaipekli, and O. Uzun, Solar Energy Materials and Solar Cells 93, 143 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.09.009
2.
2.F. Agyenim, N. Hewitt, P. Eames, and M. Smyth, Renewable and Sustainable Energy Reviews 14, 615 (2010).
http://dx.doi.org/10.1016/j.rser.2009.10.015
3.
3.M. M. Farid, A. M. Khudhair, S. A. K. Razack, and S. Al-Hallaj, Energy conversion and management 45, 1597 (2004).
http://dx.doi.org/10.1016/j.enconman.2003.09.015
4.
4.A. Sharma, V. Tyagi, C. Chen, and D. Buddhi, Renewable and Sustainable Energy Reviews 13, 318 (2009).
http://dx.doi.org/10.1016/j.rser.2007.10.005
5.
5.M. Rastogi, A. Chauhan, R. Vaish, and A. Kishan, Energy Conversion and Management 89, 260 (2015).
http://dx.doi.org/10.1016/j.enconman.2014.09.077
6.
6.S. Himran, A. Suwono, and G. A. Mansoori, Energy Sources 16, 117 (1994).
http://dx.doi.org/10.1080/00908319408909065
7.
7.C. Y. Choi E and Lorsch HG, “Thermal analysis of the mixture of laboratory and commercial grades hexadecane and tetradecane,” Int Commun Heat Mass Transfer 19, 1 (1992).
http://dx.doi.org/10.1016/0735-1933(92)90059-Q
8.
8.H. Bo, E. M. Gustafsson, and F. Setterwall, Energy 24, 1015 (1999).
http://dx.doi.org/10.1016/S0360-5442(99)00055-9
9.
9.X.-x. Zhang, X.-m. Tao, K.-l. Yick, and X.-c. Wang, Colloid and Polymer Science 282, 330 (2004).
http://dx.doi.org/10.1007/s00396-003-0925-y
10.
10.M. Zhang, M. A. Medina, and J. B. King, International Journal of Energy Research 29, 795 (2005).
http://dx.doi.org/10.1002/er.1082
11.
11.R. Baetens, B. P. Jelle, and A. Gustavsen, Energy and Buildings 42, 1361 (2010).
http://dx.doi.org/10.1016/j.enbuild.2010.03.026
12.
12.M. K. Rathod and J. Banerjee, Renewable and Sustainable Energy Reviews 18, 246 (2013).
http://dx.doi.org/10.1016/j.rser.2012.10.022
13.
13.K. Esselink, P. Hilbers, and B. Van Beest, The Journal of chemical physics 101, 9033 (1994).
http://dx.doi.org/10.1063/1.468031
14.
14.A. Sarı and A. Karaipekli, Applied Thermal Engineering 27, 1271 (2007).
http://dx.doi.org/10.1016/j.applthermaleng.2006.11.004
15.
15.A. Elgafy and K. Lafdi, Carbon 43, 3067 (2005).
http://dx.doi.org/10.1016/j.carbon.2005.06.042
16.
16.J. Wang, H. Xie, and Z. Xin, Thermochimica Acta 488, 39 (2009).
http://dx.doi.org/10.1016/j.tca.2009.01.022
17.
17.J. M. Khodadadi and S. F. Hosseinizadeh, International Communications in Heat and Mass Transfer 34, 534 (2007).
http://dx.doi.org/10.1016/j.icheatmasstransfer.2007.02.005
18.
18.S. Kim and L. T. Drzal, Solar Energy Materials and Solar Cells 93, 136 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.09.010
19.
19.M. P. Allen, Computational Soft Matter: From Synthetic Polymers to Proteins 23, 1 (2004).
20.
20.R. Mittal, M. Rastogi, N. Mahatele, and A. Vidhyarthi, in Nanoscience, Engineering and Technology (ICONSET), 2011 International Conference on (IEEE, 2011) p.30.
http://dx.doi.org/10.1109/ICONSET.2011.6167903
21.
21.W. F. van Gunsteren and A. E. Mark, The Journal of chemical physics 108, 6109 (1998).
http://dx.doi.org/10.1063/1.476021
22.
22.E. R. Hernández, in Aip Conference Proceedings, (2008) p.95.
http://dx.doi.org/10.1063/1.3040265
23.
23.C. Knight, G. E. Lindberg, and G. A. Voth, The Journal of chemical physics 137, 22A525 (2012).
http://dx.doi.org/10.1063/1.4743958
24.
24.D. C. Rapaport, The art of molecular dynamics simulation (Cambridge university press, 2004).
25.
25.V. Harmandaris, D. Angelopoulou, V. Mavrantzas, and D. Theodorou, The Journal of chemical physics 116, 7656 (2002).
http://dx.doi.org/10.1063/1.1466472
26.
26.Z. Rao, S. Wang, and F. Peng, International Journal of heat and mass transfer 64, 581 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.05.017
27.
27.Z. Rao, S. Wang, and Y. Zhang, Phase Transitions 85, 400 (2012).
http://dx.doi.org/10.1080/01411594.2011.634331
28.
28.L.-W. Fan, X. Fang, X. Wang, Y. Zeng, Y.-Q. Xiao, Z.-T. Yu, X. Xu, Y.-C. Hu, and K.-F. Cen, Applied Energy 110, 163 (2013).
http://dx.doi.org/10.1016/j.apenergy.2013.04.043
29.
29.X. Fang, L.-W. Fan, Q. Ding, X. Wang, X.-L. Yao, J.-F. Hou, Z.-T. Yu, G.-H. Cheng, Y.-C. Hu, and K.-F. Cen, Energy & Fuels 27, 4041 (2013).
http://dx.doi.org/10.1021/ef400702a
30.
30.H. Babaei, P. Keblinski, and J. Khodadadi, International Journal of heat and mass transfer 58, 209 (2013).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.11.013
31.
31.S. Grimme, Angewandte Chemie International Edition 45, 4460 (2006).
http://dx.doi.org/10.1002/anie.200600448
32.
32.D. Fu, Y. Su, B. Xie, H. Zhu, G. Liu, and D. Wang, Physical Chemistry Chemical Physics 13, 2021 (2011).
http://dx.doi.org/10.1039/c0cp01173h
33.
33.G. Ungar, The Journal of Physical Chemistry 87, 689 (1983).
http://dx.doi.org/10.1021/j100227a032
34.
34.E. Sirota and D. Singer, The Journal of chemical physics 101, 10873 (1994).
http://dx.doi.org/10.1063/1.467837
35.
35.R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo method (John Wiley & Sons, 2011), Vol. 707.
36.
36.H. Sun, The Journal of Physical Chemistry B 102, 7338 (1998).
http://dx.doi.org/10.1021/jp980939v
37.
37.A. Al-Ostaz, G. Pal, P. R. Mantena, and A. Cheng, Journal of Materials Science 43, 164 (2008).
http://dx.doi.org/10.1007/s10853-007-2132-6
38.
38.E. B. Wilson, P. C. Cross, and J. Decius, Molecular Vibration: The Theory of Infrared and Raman Vibrational Spectra (Dover, New York, 1980).
39.
39.J. Maple, T. Thacher, U. Dinur, and A. Hagler, Chem. Design Automat. News 5, 5 (1990).
40.
40.C. M. Sprague, (DTIC Document, 1983).
41.
41.M. Griebel, S. Knapek, and G. Zumbusch, Numerical simulation in molecular dynamics (Springer, 2007).
42.
42.E. Koopman and C. Lowe, The Journal of chemical physics 124, 204103 (2006).
http://dx.doi.org/10.1063/1.2198824
43.
43.H. C. Andersen, The Journal of chemical physics 72, 2384 (1980).
http://dx.doi.org/10.1063/1.439486
44.
44.r. S. D. A. Accelrys, Materials studio release notes, and S. Inc.;, (2010).
45.
45.H. Lüth, S. Nyburg, P. Robinson, and H. Scott, Molecular Crystals and Liquid Crystals 27, 337 (1974).
http://dx.doi.org/10.1080/15421407408083141
46.
46.W. Paul, G. Smith, D. Y. Yoon, B. Farago, S. Rathgeber, A. Zirkel, L. Willner, and D. Richter, Physical review letters 80, 2346 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.2346
47.
47.S. Dutour, J.-L. Daridon, and B. Lagourette, HIGH TEMPERATURES HIGH PRESSURES 33, 371 (2001).
http://dx.doi.org/10.1068/htjr007
48.
48.J.-P. Hansen and I. R. McDonald, Theory of simple liquids (Elsevier, 1990).
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4921561
Loading
/content/aip/journal/adva/5/5/10.1063/1.4921561
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4921561
2015-05-19
2016-09-29

Abstract

The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT) and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs) and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generated and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant- pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4921561.html;jsessionid=bz1jvqIwP3JkHed70iYeKvL1.x-aip-live-02?itemId=/content/aip/journal/adva/5/5/10.1063/1.4921561&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4921561&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4921561'
Right1,Right2,Right3,