Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4921564
1.
1.Y. Y. Chen, M. Dong, Z. F. Qin, X. D. Wen, W. B. Fan, and J. G. Wang, J. Mol. Catal. A-Chem. 338, 44 (2011).
2.
2.E. Benavente, M. A. Santa Ana, F. Mendizábal, and G. González, Coordin. Chem. Rev. 224, 87 (2002).
http://dx.doi.org/10.1016/S0010-8545(01)00392-7
3.
3.A. H. Reshak and S. Auluck, Phys. Rev. B 68, 125101 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.125101
4.
4.K. H. Hua, M. Liu, Q. J. Wang, Y. F. Xu, S. Schraube, and X. G. Hu, Tribol. Int. 42, 33 (2009).
http://dx.doi.org/10.1016/j.triboint.2008.05.016
5.
5.W. Li, J. F. Chen, Q. Y. He, and T. Wang, Physica B 405, 2498 (2010).
http://dx.doi.org/10.1016/j.physb.2010.03.022
6.
6.X. Y. Chen, H. L. Li, S. M. Wang, M. Yang, and Y. X. Qi, Mater. Lett. 66, 22 (2012).
http://dx.doi.org/10.1016/j.matlet.2011.03.056
7.
7.P. N. Ghosh, Phys. Rev. B 18, 5615 (1978).
http://dx.doi.org/10.1103/PhysRevB.18.5615
8.
8.P. A. Bertrand, Phys. Rev. B 44, 5745 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.5745
9.
9.Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, Physica B 406, 2254 (2011).
http://dx.doi.org/10.1016/j.physb.2011.03.044
10.
10.A. Kuc, N. Zibouche, and T. Heine, Phys. Rev. B 83, 245213 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.245213
11.
11.E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, and A. Stesmans, Nano. Res. 5(1), 43 (2012).
http://dx.doi.org/10.1007/s12274-011-0183-0
12.
12.S. Cahangirov, C. Ataca, M. Topsakal, H. Sahin, and S. Ciraci1, Phys. Rev. Lett. 108, 126103 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.126103
13.
13.B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
14.
14.C. F. Castro Guerrero, F. L. Deepak, A. Ponce, J. Cruz Reyes, M. D. Valle Granados, S. Fuentes Moyado, D. H. Galván, and M. José Yacamán, Catal. Sci. Technol. 1, 1024 (2011).
http://dx.doi.org/10.1039/c1cy00055a
15.
15.Q. Yue, J. Kang, Z. Shao, X. Zhang, S. Chang, G. Wang, S. Qin, and J. Li, Phys. Lett. A 376, 1166 (2012).
http://dx.doi.org/10.1016/j.physleta.2012.02.029
16.
16.C. Ataca and S. Ciraci, J. Phys. Chem. C 115, 13303 (2011).
http://dx.doi.org/10.1021/jp2000442
17.
17.D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. 108, 196802 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.196802
18.
18.B. Radisavljevic, M. B. Whitwick, and A. Kis, ACS Nano. 5, 9934 (2011).
http://dx.doi.org/10.1021/nn203715c
19.
19.C. Altavilla, M. Sarno, and P. Ciambelli, Chem. Mater. 23, 3879 (2011).
http://dx.doi.org/10.1021/cm200837g
20.
20.A. Ayari, E. Cobas, O. Ogundadegbe, and M. S. Fuhrer, J. Appl. Phys. 101, 014507 (2007).
http://dx.doi.org/10.1063/1.2407388
21.
21.J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King et al., Science 331, 568 (2011).
http://dx.doi.org/10.1126/science.1194975
22.
22.S. Najmaei, Z. Liu, W. Zhou, X. L. Zou, G. Shi, S. D. Lei, B. I. Yakobson, J. C. Idrobo, P. M. Ajayan, and J. Lou, Nature Mater. 12, 754 (2013).
http://dx.doi.org/10.1038/nmat3673
23.
23.A. M. Van Der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. M. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, Nature Mater. 12, 554 (2013).
http://dx.doi.org/10.1038/nmat3633
24.
24.Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, and T. W Lin, Adv. Mater. 24, 2320 (2012).
http://dx.doi.org/10.1002/adma.201104798
25.
25.J. P. Shi, D. L. Ma, G. F. Han, Y. Zhang, Q. Q. Ji, T. Gao, J. Y. Sun, X. J. Song, C. Li, Y. S. Zhang, X. Y. Lang, Y. F. Zhang, and Z. F. Liu, ASC Nano 8, 10196 (2014).
http://dx.doi.org/10.1021/nn503211t
26.
26.X. Liu, C. Z. Wang, M. Hupalo, W. C. Lu, M. C. Tringides, Y. X. Yao, and K. M. Ho, Phys. Chem. Chem. Phys. 14, 9157 (2012).
http://dx.doi.org/10.1039/c2cp40527j
27.
27.M. P. Lima, A. J. R. da Silva, and A. Fazzio, Phys. Rev. B 84, 245411 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.245411
28.
28.J. He, K. Wu, R. Sa, Q. Li, and Y. Wei, Appl. Phys. Lett. 96, 082504 (2010).
http://dx.doi.org/10.1063/1.3318254
29.
29.T. O. Wehling, A. I. Lichtenstein, and M. I. Katsnelson, Phys. Rev. B 84, 235110 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.235110
30.
30.K. T. Chan, J. B. Neaton, and M. L. Cohen, Phys. Rev. B 77, 235430 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235430
31.
31.L. Qiao, C. Q. Qu, H. Z. Zhang, S. S. Yu, X. Y. Hu, X. M. Zhang, D. M. Bi, Q. Jiang, and W. T. Zheng, Diam. Relat. Mater. 19, 1377 (2010).
http://dx.doi.org/10.1016/j.diamond.2010.08.003
32.
32.H. Sahin and F. M. Peeters, Phys. Rev. B 87, 085423 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.085423
33.
33.X. Wang, Z. Zeng, H. Ahn, and G. Wang, Appl. Phys. Lett. 95, 183103 (2009).
http://dx.doi.org/10.1063/1.3259650
34.
34.S. Grimme, J. Comput. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
35.
35.G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
36.
36.G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
37.
37.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
38.
38.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
39.
39.M. Hasegawa and K. Nishidate, Phys. Rev. B 70, 205431 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.205431
40.
40.A. Janotti, S. H. Wei, and D. J. Singh, Phys. Rev. B 64, 174107 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.174107
41.
41.N. Mounet and N. Marzari, Phys. Rev. B 71, 205214 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.205214
42.
42.D. Ma and Z. Yang, New. J. Phys. 13, 123018 (2011).
http://dx.doi.org/10.1088/1367-2630/13/12/123018
43.
43.X. Dai, Y. Li, M. Xie, G. Hu, J. Zhao, and B. Zhao, Physica E 43, 1461 (2011).
http://dx.doi.org/10.1016/j.physe.2011.04.006
44.
44.Z. Y. Huang, G. L. Hao, C. Y. He, H. Yang, L. Xue, X. Qi, X. Y. Peng, and J. X. Zhong, J. Appl. Phys. 114, 083706 (2013).
http://dx.doi.org/10.1063/1.4818952
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4921564
Loading
/content/aip/journal/adva/5/5/10.1063/1.4921564
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4921564
2015-05-19
2016-10-01

Abstract

Single adsorption of different atoms on pristine two-dimensional monolayer MoS have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS. Additionally, local or long-range magnetic moments of two-dimensional MoS sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4921564.html;jsessionid=FAXHEJDqIjkx7rbGqccjzUau.x-aip-live-02?itemId=/content/aip/journal/adva/5/5/10.1063/1.4921564&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4921564&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4921564'
Right1,Right2,Right3,