Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.A. Seabaugh and Q. Zhang, Proc. IEEE 98, 2095 (2010).
2.A. M. Ionescu and H. E. Riel, Nature 479, 329 (2011).
3.C. Hu, P. Patel, A. Bowonder, K. Jeon, S. H. Kim, W. Y. Loh, C. Y. Kang, J. Oh, P. Majhi, A. Javey, T.-J. K. Liu, and R. Jammy, Tech. Dig.-Int. Electron Devices Meet. 2010, 387.
4.K. Jeon, W.-Y. Loh, P. Patel, C. Y. Kang, J. Oh, A. Bowonder, C. Park, C. S. Park, C. Smith, P. Majhi, H.-H. Tseng, R. Jammy, T.-J. K. Liu, and C. Hu, Tech. Dig. VLSI Symp. 2010, 121.
5.R. Gandhi, Z. Chen, N. Singh, K. Banerjee, and S. Lee, IEEE Electron Device Lett. 32, 437 (2011).
6.Q. Huang, R. Huang, Z. Zhan, Y. Qiu, W. Jiang, C. Wu, and Y. Wang, Tech. Dig.-Int. Electron Devices Meet. 2012, 187.
7.S. H. Kim, H. Kam, C. Hu, and T.-J. K. Liu, Tech. Dig. VLSI Symp. 2009, 178.
8.Y. Liu, H.-J. Wang, J. Yan, and G.-Q. Han, Chin. Phys. Lett. 30, 088502 (2013).
9.L. Knoll, Q. T. Zhao, A. Nichau, S. Richter, G. V. Luong, S. Trellenkamp, A. Schäfer, L. Selmi, K. K. Bourdelle, and S. Mantl, Tech. Dig.-Int. Electron Devices Meet. 2013, 100.
10.M. Kim, Y. Wakabayashi, R. Nakane, M. Yokoyama1, M. Takenaka, and S. Takagi, Tech. Dig.-Int. Electron Devices Meet. 2014, 331.
11.G. Dewey, B. Chu-Kung, J. Boardman, J. M. Fastenau, J. Kavalieros, R. Kotlyar, W. K. Liu, D. Lubyshev, M. Metz, N. Mukherjee, P. Oakey, R. Pillarisetty, M. Radosavljevic, H. W. Then, and R. Chau, Tech. Dig.-Int. Electron Devices Meet. 2011, 785.
12.D. K. Mohata, R. Bijesh, S. Mujumdar, C. Eaton, R. Engel-Herbert, T. Mayer, V. Narayanan, J. M. Fastenau, D. Loubychev, A. K. Liu, and S. Datta, Tech. Dig.-Int. Electron Devices Meet. 2011, 781.
13.S. Mookerjea, D. Mohata, R. Krishnan, J. Singh, A. Vallett, A. Ali, T. Mayer, V. Narayanan, D. Schlom, A. Liu, and S. Datta, Tech. Dig.-Int. Electron Devices Meet. 2011, 949.
14.B. M. Borg, K. A. Dick, B. Ganjipour, M.-E. Pistol, L.-E. Wernersson, and C. Thelander, Nano Lett. 10, 4080 (2010).
15.K. Tomioka, M. Yoshimura, and T. Fukui, Tech. Dig. VLSI Symp. 2012, 47.
16.R. Li, Y. Lu, G. Zhou, Q. Liu, S. D. Chae, T. Vasen, W. S. Hwang, Q. Zhang, P. Fay, T. Kosel, M. Wistey, H. Xing, and A. Seabaugh, IEEE Electron Device Lett. 33, 363 (2012).
17.G. Zhou, R. Li, T. Vasen, M. Qi, S. Chae, Y. Lu, Q. Zhang, H. Zhu, J.-M. Kuo, T. Kosel, M. Wistey, P. Fay, A. Seabaugh, and H. Xing, Tech. Dig.-Int. Electron Devices Meet. 2012, 777.
18.F. Mayer, C. Le Royer, J.-F. Damlencourt, K. Romanjek, F. Andrieu, C. Tabone, B. Previtali, and S. Deleonibus, Tech. Dig.-Int. Electron Devices Meet. 2008, 163.
19.A. Villalon, C. Le Royer, M. Cassé, D. Cooper, B. Prévitali, C. Tabone, J.-M. Hartmann, P. Perreau, P. Rivallin, J.-F. Damlencourt, F. Allain, F. Andrieu, O. Weber, O. Faynot, and T. Poiroux, Tech. Dig. VLSI Symp. 2012, 49.
20.M. H. Lee, S. T. Chang, T.-H. Wu, and W.-N. Tseng, IEEE Electron Device Lett. 32, 1355 (2011).
21.Y. Yang, S. Su, P. Guo, W. Wang, X. Gong, L. Wang, K. L. Low, G. Zhang, C. Xue, B. Cheng, G. Han, and Y.-C. Yeo, Tech. Dig.-Int. Electron Devices Meet. 2012, 379.
22.R. Kotlyar, U. E. Avci, S. Cea, R. Rios, T. D. Linton, K. J. Kuhn, and I. A. Young, Appl. Phys. Lett. 102, 113106 (2013).
23.Y. Yang, K. L. Low, W. Wang, P. Guo, L. Wang, G. Han, and Y.-C. Yeo, J. Appl. Phys. 113, 194507 (2013).
24.Y. Yang, G. Han, P. Guo, W. Wang, X. Gong, L. Wang, K. L. Low, and Y.-C. Yeo, IEEE Trans. Electron Devices 60, 4048 (2013).
25.U. E. Avci, D. H. Morris, S. Hasan, and R. Kotlyar, Dig.-Int. Electron Devices Meet. 2013, 830.
26.M. Liu, Y. Liu, H. Wang, Q. Zhang, C. Zhang, S. Hu, Y. Hao, and G. Han, IEEE Trans. Electron Devices 62, 1262 (2015).
27.S. Wirths, A. T. Tiedemann, Z. Ikonic, P. Harrison, B. Holländer, T. Stoica, G. Mussler, M. Myronov, J. M. Hartmann, D. Grutzmacher, D. Buca, and S. Mantl, Appl. Phys. Lett. 102, 192103 (2013).
28.S. Gupta, B. M.- Köpe, Y. Nishi, and K. C. Saraswat, J. Appl. Phys. 113, 073707 (2013).
29.K. L. Low, Y. Yang, G. Han, W.-J. Fan, and Y.-C. Yeo, J. Appl. Phys. 112, 103715 (2012).
30.P. Aella, C. Cook, J. Tolle, S. Zollner, A. V. G. Chizmeshya, and J. Kouvetakis, Appl. Phys. Lett. 84, 888 (2004).
31.A. V. G. Chizmeshya, M. R. Bauer, and J. Kouvetakis, Chem. Mater. 15, 2511 (2003).
32.M. Bauer, J. Taraci, J. Tolle, A. V. G. Chizmeshya, S. Zollner, D. J. Smith, J. Menendez, C. Hu, and J. Kouvetakis, Appl. Phys. Lett. 81, 2992 (2002).
33.K.-H. Kao, A. S. Verhulst, W. G. Vandenberghe, B. Sorée, G. Groeseneken, and K. De Meyer, IEEE Trans. Electron Devices 59, 292 (2012).
34.S. Gupta, V. Moroz, L. Smith, Q. Lu, and K. C. Saraswat, IEEE Trans. Electron Devices 61, 1222 (2014).
35.K.-H. Kao, A. S. Verhulst, M. Van de Put, W. G. Vandenberghe, B. Soree, W. Magnus, and K. De Meyer, J. Appl. Phys. 115, 044505 (2014).
36.P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, 2nd ed. (Springer, 1999).
37.B. Rajamohanan, D. Mohata, Y. Zhu, M. Hudait, Z. Jiang, M. Hollander, G. Klimeck, and S. Datta, J. Appl. Phys. 115, 044502 (2014).

Data & Media loading...


Article metrics loading...



In this work, relaxed GeSn p-channel tunneling field-effect transistors (pTFETs) with various Sn compositions are fabricated on Si. Enhancement of on-state current with the increase of Sn composition is observed in transistors, due to the reduction of direct bandgap . Ge Sn and Ge Sn pTFETs achieve 110% and 75% enhancement in , respectively, compared to Ge Sn devices, at  -  = = - 1.0 V. For the first time, enhancement in GeSn pTFET utilizing uniaxial tensile strain is reported. By applying 0.14% uniaxial tensile strain along [110] channel direction, Ge Sn pTFETs achieve 12% improvement, over unstrained control devices at  -  = = - 1.0 V. Theoretical study demonstrates that uniaxial tensile strain leads to the reduction of direct and affects the reduced tunneling mass, which bring the rising, benefiting the tunneling current enhancement in GeSn TFETs.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd