Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4921642
1.
1.H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Mater. 11, 103 (2012).
http://dx.doi.org/10.1038/nmat3223
2.
2.A. Bhattacharya and S. J. May, Annu. Rev. Mater. Res. 44, 65 (2014).
http://dx.doi.org/10.1146/annurev-matsci-070813-113447
3.
3.J. A. Sulpizio, S. Ilani, P. Irvin, and J. Levy, Annu. Rev. Mater. Res. 44, 117 (2014).
http://dx.doi.org/10.1146/annurev-matsci-070813-113437
4.
4.S. Stemmer and S. J. Allen, Annu. Rev. Mater. Res. 44, 151 (2014).
http://dx.doi.org/10.1146/annurev-matsci-070813-113552
5.
5.N. C. Bristowe, P. Ghosez, P. B. Littlewood, and E. Artacho, J. Phys.: Condens. Matter 26, 143201 (2014).
http://dx.doi.org/10.1088/0953-8984/26/14/143201
6.
6.A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004).
http://dx.doi.org/10.1038/nature02308
7.
7.N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A. S. Ruetschi, D. Jaccard, M. Gabay et al., Science 317, 1196 (2007).
http://dx.doi.org/10.1126/science.1146006
8.
8.A. Brinkman, M. Huijben, M. Van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. Van der Wiel, G. Rijnders, D. H. A. Blank, and H. Hilgenkamp, Nat. Mater. 6, 493 (2007).
http://dx.doi.org/10.1038/nmat1931
9.
9.N. Nakagawa, H. Y. Hwang, and D. A. Muller, Nat. Mater. 5, 204 (2006).
http://dx.doi.org/10.1038/nmat1569
10.
10.Z. Q. Liu, C. J. Li, W. M. , X. H. Huang, Z. Huang, S. W. Zeng, X. P. Qiu, L. S. Huang, A. Annadi, J. S. Chen et al., Phys. Rev. X 3, 021010 (2013).
11.
11.D. G. Schlom, L.-Q. Chen, C.-B. Eom, K. M. Rabe, S. K. Streiffer, and J.-M. Triscone, Annu. Rev. Mater. Res. 37, 589 (2007).
http://dx.doi.org/10.1146/annurev.matsci.37.061206.113016
12.
12.D. G. Schlom, L.-Q. Chen, C. J. Fennie, V. Gopalan, D. A. Muller, X. Pan, R. Ramesh, and R. Uecker, MRS Bull. 39, 118 (2014).
http://dx.doi.org/10.1557/mrs.2014.1
13.
13.J. M. Rondinelli and N. A. Spaldin, Adv. Mater. 23, 3363 (2011).
http://dx.doi.org/10.1002/adma.201101152
14.
14.K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan et al., Science 306, 1005 (2004).
http://dx.doi.org/10.1126/science.1103218
15.
15.J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo et al., Nature 430, 758 (2004).
http://dx.doi.org/10.1038/nature02773
16.
16.M. D. Biegalski, Y. Jia, D. G. Schlom, S. Trolier-McKinstry, S. K. Streiffer, V. Sherman, R. Uecker, and P. Reiche, Appl. Phys. Lett. 88, 192907 (2006).
http://dx.doi.org/10.1063/1.2198088
17.
17.H. W. Jang, A. Kumar, S. Denev, M. D. Biegalski, P. Maksymovych, C. W. Bark, C. T. Nelson, C. M. Folkman, S. H. Baek, N. Balke et al., Phys. Rev. Lett. 104, 197601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.197601
18.
18.R. Wördenweber, J. Schubert, T. Ehlig, and E. Hollmann, J. Appl. Phys. 113, 164103 (2013).
http://dx.doi.org/10.1063/1.4802676
19.
19.C.-H. Lee, V. Skoromets, M. D. Biegalski, S. Lei, R. Haislmaier, M. Bernhagen, R. Uecker, X. Xi, V. Gopalan, X. Martí et al., Appl. Phys. Lett. 102, 082905 (2013).
http://dx.doi.org/10.1063/1.4793649
20.
20.M. Tyunina, J. Narkilahti, M. Plekh, R. Oja, R. M. Nieminen, A. Dejneka, and V. Trepakov, Phys. Rev. Lett. 104, 227601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.227601
21.
21.C. W. Bark, D. A. Felker, Y. Wang, Y. Zhang, H. W. Jang, C. M. Folkman, J. W. Park, S. H. Baek, H. Zhou, D. D. Fong et al., Proc Natl Acad Sci 108, 4720 (2011).
http://dx.doi.org/10.1073/pnas.1014849108
22.
22.Z. Huang, Z. Q. Liu, M. Yang, S. W. Zeng, A. Annadi, W. M. , X. L. Tan, P. F. Chen, L. Sun, X. Renshaw Wang et al., Phys. Rev. B 90, 125156 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.125156
23.
23.Y. Jeong Ho, L. Jun Hee, O. Satoshi, C. Valentino, and L. Ho Nyung, J. Phys. D: Appl. Phys. 48, 085303 (2015).
http://dx.doi.org/10.1088/0022-3727/48/8/085303
24.
24.R. Oja, M. Tyunina, L. Yao, T. Pinomaa, T. Kocourek, A. Dejneka, O. Stupakov, M. Jelinek, V. Trepakov, S. van Dijken et al., Phys. Rev. Lett. 109, 127207 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.127207
25.
25.W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
26.
26.P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
27.
27.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
28.
28.J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.136406
29.
29.J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. A. Sawatzky, and M. T. Czyzyk, Phys. Rev. B 38, 11322 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.11322
30.
30.S. Ray, P. Mahadevan, A. Kumar, D. D. Sarma, R. Cimino, M. Pedio, L. Ferrari, and A. Pesci, Phys. Rev. B 67, 085109 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.085109
31.
31.R. Pentcheva and W. E. Pickett, Phys. Rev. B 74, 035112 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.035112
32.
32.S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.1505
33.
33.J. Narkilahti and M. Tyunina, J. Phys.: Condens. Matter. 24, 325901 (2012).
http://dx.doi.org/10.1088/0953-8984/24/32/325901
34.
34.L. Cao, E. Sozontov, and J. Zegenhagen, phys. stat. sol. (a) 181, 387 (2000).
http://dx.doi.org/10.1002/1521-396X(200010)181:2%3C387::AID-PSSA387%3E3.0.CO;2-5
35.
35.A. Antons, J. B. Neaton, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B 71, 024102 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.024102
36.
36.E. C. Stoner, Proc. R. Soc. A 165, 372 (1938).
http://dx.doi.org/10.1098/rspa.1938.0066
37.
37.S. Blundell, Magnetism in Condensed Matter (Oxford University Press, Oxford, 2001).
38.
38.H. Peng, H. J. Xiang, S.-H. Wei, S. S. Li, J. B. Xia, and J. Li, Phys. Rev. Lett. 102, 017201 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.017201
39.
39.Y. Yang, C.-s. Lin, J.-f. Chen, L. Hu, and W.-d. Cheng, Europhys. Lett. 105, 27002 (2014).
http://dx.doi.org/10.1209/0295-5075/105/27002
40.
40.Y. Yang, C.-S. Lin, J.-F. Chen, L. Hu, and W.-D. Cheng, J. Appl. Phys. 116, 153709 (2014).
http://dx.doi.org/10.1063/1.4898738
41.
41.Z. Popović, S. Satpathy, and R. Martin, Phys. Rev. Lett. 101, 256801 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.256801
42.
42.J. C. Li, J. I. Beltrán, and M. C. Muñoz, Phys. Rev. B 87, 075411 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.075411
43.
43.N. Ogawa, K. Miyano, M. Hosoda, T. Higuchi, C. Bell, Y. Hikita, and H. Y. Hwang, Phys. Rev. B 80, 081106 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.081106
44.
44.A. Rubano, M. Fiebig, D. Paparo, A. Marino, D. Maccariello, U. Scotti di Uccio, F. Miletto Granozio, L. Marrucci, C. Richter, S. Paetel et al., Phys. Rev. B 83, 155405 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.155405
45.
45.S. Okamoto, A. Millis, and N. Spaldin, Phys. Rev. Lett. 97, 056802 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.056802
46.
46.Y. Wang, M. Niranjan, S. Jaswal, and E. Tsymbal, Phys. Rev. B 80, 165130 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.165130
47.
47.C. G. Duan, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett. 97, 047201 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.047201
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4921642
Loading
/content/aip/journal/adva/5/5/10.1063/1.4921642
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4921642
2015-05-20
2016-09-30

Abstract

We have performed density functional theory calculations to explore the impact of biaxial compressive strain on the heterostructures of paraelectrics KTaO and SrTiO. We find that the strain induces strong ferroelectric distortion in KTaO/SrTiO heterostructures and it stabilizes the heterostructures in ferroelectric states.The strain influences the distribution of doped holes and leads to the localization of holes in TiO layer. It is very interesting that ferroelectricity and ferromagnetism simultaneously present in the strained heterostructures formed by the paraelectrics KTaO and SrTiO. The reversal of ferroelectric polarization changes the interface magnetization and thus results in magnetoelectric coupling effect in the heterostructures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4921642.html;jsessionid=jy0YZDdMkGmJcXY1auRcvcG3.x-aip-live-03?itemId=/content/aip/journal/adva/5/5/10.1063/1.4921642&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4921642&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4921642'
Right1,Right2,Right3,