Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4921697
1.
1.I. Shavitt and R. J. Bartlett, Many-body methods in chemistry and physics: MBPT and coupled-cluster theory, Cambridge molecular science series (Cambridge University Press, Cambridge, 2009).
2.
2.A. Karton, E. Rabinovich, J. M. L. Martin, and B. Ruscic, J. Chem. Phys. 125, 144108 (2006).
http://dx.doi.org/10.1063/1.2348881
3.
3.A. Karton, P. R. Taylor, and J. M. L. Martin, Chem. Phys. 127, 064104 (2007).
4.
4.A. Karton, S. Daon, and J. M. L. Martin, Chem. Phys. Lett. 510, 165 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.05.007
5.
5.A. Tajti, P. G. Szalay, A. G. Császár, M. Kállay, J. Gauss, E. F. Valeev, B. A. Flowers, J. Vázquez, and J. F. Stanton, J. Chem. Phys. 121, 11599 (2004).
http://dx.doi.org/10.1063/1.1811608
6.
6.Y. J. Bomble, J. Vázquez, M. Kalláy, C. Michauk, P. G. Szalay, A. G. Cśaszár, J. Gauss, and J. F. Stanton, J. Chem. Phys. 125, 064108 (2006).
http://dx.doi.org/10.1063/1.2206789
7.
7.M. E. Harding, J. Vázquez, B. Ruscic, A. K. Wilson, J. Gauss, and J. F. Stanton, J. Chem. Phys. 128, 114111 (2008).
http://dx.doi.org/10.1063/1.2835612
8.
8.W. Klopper, B. Ruscic, D. P. Tew, F. A. Bischoff, and S. Wolfsegger, Chem. Phys. 356, 14 (2009).
http://dx.doi.org/10.1016/j.chemphys.2008.11.013
9.
9.K. A. Peterson, D. Feller, and D. A. Dixon, Theor. Chem. Acc. 131, 1079 (2012).
http://dx.doi.org/10.1007/s00214-011-1079-5
10.
10.A. Karton, I. Kaminker, and J. M. L. Martin, J. Phys. Chem. A 113, 7610 (2009).
http://dx.doi.org/10.1021/jp900056w
11.
11.T. Helgaker, W. Klopper, and D. P. Tew, Mol. Phys. 106, 2107 (2008).
http://dx.doi.org/10.1080/00268970802258591
12.
12.J. M. L. Martin, Annual Reports in Computational Chemistry (Elsevier, New York, 2005), Vol. 1, pp. 3143.
13.
13.A. Karton and J. M. L. Martin, J. Chem. Phys. 133, 144102 (2010).
http://dx.doi.org/10.1063/1.3489113
14.
14.J. M. L. Martin and M. K. Kesharwani, J. Chem. Theory Comput. 10, 2085 (2014).
http://dx.doi.org/10.1021/ct500174q
15.
15.T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
16.
16.R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
http://dx.doi.org/10.1063/1.462569
17.
17.T. H. Dunning, K. A. Peterson, and A. K. Wilson, J. Chem. Phys. 114, 9244 (2001)
http://dx.doi.org/10.1063/1.1367373
18.
18.D. Feller, J. Chem. Phys. 96, 6104 (1992);
http://dx.doi.org/10.1063/1.462652
18.D. Feller, J. Chem. Phys. 98, 7059 (1993).
http://dx.doi.org/10.1063/1.464749
19.
19.K. A. Peterson, D. E. Woon, and T. H. Dunning, J. Chem. Phys. 100, 7410 (1994).
http://dx.doi.org/10.1063/1.466884
20.
20.J. M. L. Martin, J. Chem. Phys. 100, 8186 (1994).
http://dx.doi.org/10.1063/1.466813
21.
21.J. M. L. Martin, Chem. Phys. Lett. 259, 669 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00898-6
22.
22.J. M. L. Martin and T. J. Lee, Chem. Phys. Lett. 258, 136 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00658-6
23.
23.J. M. L. Martin and P. R. Taylor, J. Chem. Phys. 106, 8620 (1997).
http://dx.doi.org/10.1063/1.473918
24.
24.A. K. Wilson and T. H. Dunning, J. Chem. Phys. 106, 8718 (1997).
http://dx.doi.org/10.1063/1.473932
25.
25.T. Helgaker, W. Klopper, H. Koch, and J. Nago, J. Chem. Phys. 106, 9639 (1997).
http://dx.doi.org/10.1063/1.473863
26.
26.A. Halkier, T. Helgaker, P. Jorgensen, W. Klopper, H. Koch, J. Olsen, and A. K. Wilson, Chem. Phys. Lett. 286, 243 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00111-0
27.
27.D. G. Truhlar, Chem. Phys. Lett. 294, 45 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)00866-5
28.
28.D. Feller and K. A. Peterson, J. Chem. Phys. 108, 154 (1998).
http://dx.doi.org/10.1063/1.475370
29.
29.P. L. Fast, M. L. Sánchez, and D. G. Truhlar, J. Chem. Phys. 111, 2921 (1999).
http://dx.doi.org/10.1063/1.479659
30.
30.D. Feller and K. A. Peterson, J. Chem. Phys. 110, 8384 (1999);
http://dx.doi.org/10.1063/1.478747
30.D. Feller and K. A. Peterson, J. Chem. Phys. 126, 114105 (2007).
http://dx.doi.org/10.1063/1.2464112
31.
31.A. J. C. Varandas, J. Chem. Phys. 113, 8880 (2000).
http://dx.doi.org/10.1063/1.1319644
32.
32.W. Klopper, Mol. Phys. 99, 481 (2001).
http://dx.doi.org/10.1080/00268970010017315
33.
33.E. F. Valeev, W. D. Allen, R. Hernandez, C. D. Sherrill, and H. F. Schaefer, J. Chem. Phys. 118, 8594 (2003).
http://dx.doi.org/10.1063/1.1566744
34.
34.D. W. Schwenke, J. Chem. Phys. 122, 014107 (2005).
http://dx.doi.org/10.1063/1.1824880
35.
35.D. Feller, K. A. Peterson, and T. D. Crawford, J. Chem. Phys. 124, 054107 (2006)
http://dx.doi.org/10.1063/1.2137323
36.
36.D. Bakowies, J. Chem. Phys. 127, 164109 (2007);
http://dx.doi.org/10.1063/1.2768359
36.D. Bakowies, J. Chem. Phys. 127, 084105 (2007).
http://dx.doi.org/10.1063/1.2749516
37.
37.E. C. Barnes, G. A. Petersson, D. Feller, and K. A. Peterson, J. Chem. Phys. 129, 194115 (2008).
http://dx.doi.org/10.1063/1.3013140
38.
38.D. Feller, K. A. Peterson, and J. G. Hill, J. Chem. Phys. 135, 044102 (2011).
http://dx.doi.org/10.1063/1.3613639
39.
39.D. Feller, J. Chem. Phys. 138, 074103 (2013).
http://dx.doi.org/10.1063/1.4791560
40.
40.D. S. Ranasinghe and G. A. Petersson, J. Chem. Phys. 138, 144104 (2013).
http://dx.doi.org/10.1063/1.4798707
41.
41.F. N. N. Pansini and A. J. C. Varandas, Chem. Phys. Lett. (2015), in press
http://dx.doi.org/10.1016/j.cplett.2015.04.052
42.
42.P. Jurecka, J. Sponer, J. Cerny, and P. Hobza, Phys. Chem. Chem. Phys. 8, 1985 (2006).
http://dx.doi.org/10.1039/b600027d
43.
43.L. Goerigk, A. Karton, J. M. L. Martin, and L. Radom, Phys. Chem. Chem. Phys. 15, 7028 (2013).
http://dx.doi.org/10.1039/c3cp00057e
44.
44.D. G. Liakos and F. Neese, J. Phys. Chem. A 116, 4801 (2012).
http://dx.doi.org/10.1021/jp302096v
45.
45.B. Brauer, M. K. Kesharwani, and J. M. L. Martin, J. Chem. Theory Comput. 10, 3791 (2014).
http://dx.doi.org/10.1021/ct500513b
46.
46.A. Karton and L.-J. Yu, Chem. Phys. 441, 166 (2014).
http://dx.doi.org/10.1016/j.chemphys.2014.07.015
47.
47.X. He, L. Fusti-Molnar, and K. M. Merz, Jr., J. Phys. Chem. A 113, 10096 (2009).
http://dx.doi.org/10.1021/jp904423r
48.
48.A. Karton and L. Goerigk, J. Comp. Chem. 36, 622 (2015).
http://dx.doi.org/10.1002/jcc.23837
49.
49.MOLPRO is a package of ab initio programs written by, H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, and G. Rauhut, et al. See: http://www.molpro.net.
50.
50.H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 242 (2012).
http://dx.doi.org/10.1002/wcms.82
51.
51.J. M. L. Martin and G. de Oliveira, J. Chem. Phys. 111, 1843 (1999).
http://dx.doi.org/10.1063/1.479454
52.
52.A. D. Boese, M. Oren, O. Atasoylu, J. M. L. Martin, M. Kállay, and J. Gauss, J. Chem. Phys. 120, 4129 (2004).
http://dx.doi.org/10.1063/1.1638736
53.
53.A. Karton and J. M. L. Martin, J. Chem. Phys. 136, 124114 (2012).
http://dx.doi.org/10.1063/1.3697678
54.
54.L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov, and J. A. Pople, J Chem Phys 110, 4703 (1999).
http://dx.doi.org/10.1063/1.478385
55.
55.L. A. Curtiss, P. C. Redfern, and K. Raghavachari, J. Chem. Phys. 127, 124105 (2007).
http://dx.doi.org/10.1063/1.2770701
56.
56.L. A. Curtiss, P. C. Redfern, and K. Raghavachari, WIREs Comput. Mol. Sci. 1, 810 (2011).
http://dx.doi.org/10.1002/wcms.59
57.
57.A. Karton, L.-J. Yu, M. K. Kesharwani, and J. M. L. Martin, Theor. Chem. Acc. 133, 1483 (2014).
http://dx.doi.org/10.1007/s00214-014-1483-8
58.
58.A. Karton, P. R. Schreiner, and J. M. L. Martin, J. Comp. Chem. (2015) accepted.
59.
59.See supplementary material at http://dx.doi.org/10.1063/1.4921697 for the individual errors for the global extrapolations (Table S1); ideal extrapolation exponents for system-dependent extrapolations that will reproduce the CCSD/CBS energies (Table S2 and Figure S1); individual errors for the system-dependent extrapolations (Table S3); extrapolation exponents for system-dependent extrapolations obtained from MP2 calculations (Table S4); individual errors for the CCSD/X(MP2/Y) additivity scheme (Table S5); and ΔCCSD and ΔMP2 basis-set-correction terms used in the CCSD/X(MP2/Y) additivity schemes (Table S6).[Supplementary Material]
60.
60. In W1w theory the HF energy is extrapolated from the A′V{T,Q}Z basis sets using eq. (1) with α = 5, and the (T) contribution is extrapolated from the A′V{D,T}Z basis sets using the same extrapolation with α = 3.22.
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4921697
Loading
/content/aip/journal/adva/5/5/10.1063/1.4921697
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4921697
2015-05-20
2016-12-09

Abstract

Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/ two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol–1. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol–1.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4921697.html;jsessionid=I33CoAlXWbnXRUf9cuUrrwe7.x-aip-live-03?itemId=/content/aip/journal/adva/5/5/10.1063/1.4921697&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4921697&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4921697'
Right1,Right2,Right3,