Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4921836
1.
1.P. R. Chalker, S. J. Bull, and D. S. Rickerby, Mater. Sci. Eng. A-Struct. Mater. 140, 583 (1991).
http://dx.doi.org/10.1016/0921-5093(91)90482-3
2.
2.S. V. Hainsworth and W. C. Soh, Surf. Coat. Technol. 163, 515 (2003).
http://dx.doi.org/10.1016/S0257-8972(02)00652-7
3.
3.S. Hogmark, S. Jacobson, and M. Larsson, Wear 246, 20 (2000).
http://dx.doi.org/10.1016/S0043-1648(00)00505-6
4.
4.J. H. Je, E. Gyarmati, and A. Naoumidis, Thin Solid Films 136, 57 (1986).
http://dx.doi.org/10.1016/0040-6090(86)90108-2
5.
5.S. J. Bull, D. S. Rickerby, and A. Jain, Surf. Coat. Technol. 41, 269 (1990).
http://dx.doi.org/10.1016/0257-8972(90)90138-3
6.
6.D. Dowson, Wear 103, 189 (1985).
http://dx.doi.org/10.1016/0043-1648(85)90010-9
7.
7.H. E. Hintermann, Wear 100, 381 (1984).
http://dx.doi.org/10.1016/0043-1648(84)90023-1
8.
8.J. L. Bucaille, E. Felder, and G. Hochstetter, J. Tribol.-Trans. ASME 126, 372 (2004).
http://dx.doi.org/10.1115/1.1645535
9.
9.K. Holmberg, A. Laukkanen, H. Ronkainen, K. Wallin, and S. Varjus, Wear 254, 278 (2003).
http://dx.doi.org/10.1016/S0043-1648(02)00297-1
10.
10.J. Li and W. Beres, Wear 260, 1232 (2006).
http://dx.doi.org/10.1016/j.wear.2005.08.008
11.
11.H. Pelletier, A. L. Durier, C. Gauthier, and R. Schirrer, Tribol. Int. 41, 975 (2008).
http://dx.doi.org/10.1016/j.triboint.2008.03.005
12.
12.H. Jiang, G. T. Lim, J. N. Reddy, J. D. Whitcomb, and H. J. Sue, J. Polym. Sci. Pt. B-Polym. Phys. 45, 1435 (2007).
http://dx.doi.org/10.1002/polb.21169
13.
13.H. Jiang, R. Browning, J. D. Whitcomb, M. Ito, M. Shimouse, T. A. Chang, and H. J. Sue, Tribol. Lett. 37, 159 (2010).
http://dx.doi.org/10.1007/s11249-009-9505-8
14.
14.J. L. Bucaille and E. Felder, Philos. Mag. A 82, 2003 (2002).
http://dx.doi.org/10.1080/01418610208235712
15.
15.J. L. Bucaille, C. Gauthier, E. Felder, and R. Schirrer, Wear 260, 803 (2006).
http://dx.doi.org/10.1016/j.wear.2005.04.007
16.
16.P. L. Larsson and F. Wredenberg, J. Phys. D: Appl. Phys. 41, 074022 (2008).
http://dx.doi.org/10.1088/0022-3727/41/7/074022
17.
17.B. Feng and V. I. Levitas, J. Appl. Phys. 114, 213514 (2013).
http://dx.doi.org/10.1063/1.4840875
18.
18.B. Feng, V. I. Levitas, and O. M. Zarechnyy, J. Appl. Phys. 114, 043506 (2013).
http://dx.doi.org/10.1063/1.4816050
19.
19.B. Feng, V. I. Levitas, and Y. Ma, J. Appl. Phys. 115, 163509 (2014).
http://dx.doi.org/10.1063/1.4873460
20.
20.H. Jiang, R. Browning, J. Fincher, A. Gasbarro, S. Jones, and H. J. Sue, Appl. Surf. Sci. 254, 4494 (2008).
http://dx.doi.org/10.1016/j.apsusc.2008.01.067
21.
21.S. Lafaye, C. Gauthier, and R. Schirrer, Tribol. Int. 38, 113 (2005).
http://dx.doi.org/10.1016/j.triboint.2004.06.006
22.
22.S. K. Sinha and D. B. J. Lim, Wear. 260, 751 (2006).
http://dx.doi.org/10.1016/j.wear.2005.04.018
23.
23.S. V. Hainsworth and W. C. Soh, Surf. Coat. Technol. 163, 515 (2003).
http://dx.doi.org/10.1016/S0257-8972(02)00652-7
24.
24.Z. F. Zhang, L. C. Zhang, and Y. W. Mai, J. Mater. Sci. 30, 5999 (1995).
http://dx.doi.org/10.1007/BF01151519
25.
25.R. K. Abu Al-Rub and G. Z. Voyiadjis, Int J Plasticity 20, 1139 (2004).
http://dx.doi.org/10.1016/j.ijplas.2003.10.007
26.
26.W. D. Nix and H. J. Gao, J Mech Phys Solids 46, 411 (1998).
http://dx.doi.org/10.1016/S0022-5096(97)00086-0
27.
27.J. G. Swadener, E. P. George, and G. M. Pharr, J Mech Phys Solids 50, 681 (2002).
http://dx.doi.org/10.1016/S0022-5096(01)00103-X
28.
28.R. Saha, Z. Y. Xue, Y. Huang, and W. D. Nix, J Mech Phys Solids 49, 1997 (2001).
http://dx.doi.org/10.1016/S0022-5096(01)00035-7
29.
29.Z. Xue, Y. Huang, K. C. Hwang, and M. Li, J. Eng. Mater. Tech.-ASME 124, 371 (2002).
http://dx.doi.org/10.1115/1.1480409
30.
30.S. Chen, B. Feng, Y. Wei, and T. Wang, Int. J. Solids Struct. 48, 3099 (2011).
http://dx.doi.org/10.1016/j.ijsolstr.2011.07.007
31.
31.R. D. Ott, C. A. Blue, M. L. Santella, and P. J. Wear 251, 868 (2001).
http://dx.doi.org/10.1016/S0043-1648(01)00744-X
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4921836
Loading
/content/aip/journal/adva/5/5/10.1063/1.4921836
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4921836
2015-05-26
2016-12-10

Abstract

When friction stress on a contact surface reaches material yield strength in shear, contact slippage can occur even if the slipping condition for Coulomb friction is not satisfied. In this paper, a three-dimensional (3-D) scratch model is proposed, which considers combined Coulomb and plastic friction. Influences of plastic friction are discussed for two continuous displacement loading steps: indentation and scratch. For indentation, initially the sliding on the contact surface can not take place and the complete cohesion condition should be employed; then as the indenter is further compressed down to the coating surface, plastic friction instead of Coulomb friction prevails in most of the contact region. For scratch, the previous complete cohesion at the initial indentation is substituted by plastic or Coulomb slipping, and the slippage becomes plastic-sliding governed for a slightly large indentation depth. The effects of the indentation depth and the Coulomb friction coefficient on the scratch friction coefficient are discussed in detail. Several experimental phenomena are interpreted, which include that with an increase of the normal loading, the scratch friction coefficient reduces for the soft coating but grows for the hard coating; and with the growth of hardness after heat treatment, the scratch friction coefficient increases due to weak plastic slippage. Obtained results help to elucidate tribological behaviors during scratch and are helpful for the interpretation of experimental phenomena and the improvement of numerical simulations for the scratch process.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4921836.html;jsessionid=UmisBLAWloA_CQIWXagYFTZc.x-aip-live-03?itemId=/content/aip/journal/adva/5/5/10.1063/1.4921836&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4921836&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4921836'
Right1,Right2,Right3,