Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/5/5/10.1063/1.4921900
1.
1.R.A. de Groot, F.M. Mueller, P.G. van Engen, and K.H.J. Buschow, Phys. Rev. Lett 50, 2024 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.2024
2.
2.S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Science 294, 1488 (2001).
http://dx.doi.org/10.1126/science.1065389
3.
3.M. Julliere, Phys. Lett. A 54, 225 (1975).
http://dx.doi.org/10.1016/0375-9601(75)90174-7
4.
4.I. Zutic, J. Fabian, and S. Das Sarma, Reviews of Modern Physics 76, 323 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.323
5.
5.R.A. de Groot, F.M. Mueller, P.G. van Engen, and K.H.J. Buschow, Phys. Rev. Lett. 50, 2024-2027 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.2024
6.
6.S. Soeya, J. Hayakawa, H. Takahashi, K. Ito, C. Yamamoto, A. Kida, H. Asano, and M. Matsui, Appl. Phys. Lett. 80, 823 (2002).
http://dx.doi.org/10.1063/1.1446995
7.
7.Z.H. Zhu and X.H. Yan, J. Appl. Phys. 106, 023713 (2009).
http://dx.doi.org/10.1063/1.3182721
8.
8.K.L. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, Nature 395, 677 (1998).
http://dx.doi.org/10.1038/26427
9.
9.L. Kronik, M. Jain, and J.R. Chelikowsky, Phys. Rev. B 66, 041203 (R) (2002).
http://dx.doi.org/10.1103/PhysRevB.66.041203
10.
10.N.A. Noor, S. Ali, and A. Shaukat, J. Phys. Chem. Solids 72, 836 (2011).
http://dx.doi.org/10.1016/j.jpcs.2011.04.008
11.
11.I. Galanakis and P. Mavropoulos, Phys. Rev. B 67, 104417 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.104417
12.
12.K.L. Yao, G.Y. Gao, Z.L. Liu, and L. Zhu, Solid State Commun 133, 301 (2005).
http://dx.doi.org/10.1016/j.ssc.2004.11.016
13.
13.A. Birsan, Curr. Appl. Phys. 14, 1434 (2014).
http://dx.doi.org/10.1016/j.cap.2014.08.009
14.
14.I. Galanakis, K. Ozdogan, E. Sasioglu, and B. Aktas, Phys. Rev. B 75, 172405 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.172405
15.
15.G.D. Liu, X.F. Dai, S.Y. Yu, Z.Y. Zhu, J.L. Chen, and G.H. Wu, Phys. Rev. B 74, 054435 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.054435
16.
16.G.D. Liu, X.F. Dai, H.Y. Liu, J.L. Chen, and Y.X. Li, Phys. Rev. B 77, 014424 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.014424
17.
17.H.Z. Luo, G.D. Liu, F.B. Meng, J.Q. Li, E.K. Liu, and G.H. Wu, J. Magn. Magn. Mater. 324, 3295 (2012).
http://dx.doi.org/10.1016/j.jmmm.2012.05.033
18.
18.S. Picozzi, A. Continenza, and A. J. Freeman, Phys. Rev. B 66, 094421 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.094421
19.
19.H.Z. Luo, F.B. Meng, G.D. Liu, H.Y. Liu, P.Z. Jia, E.K. Liu, W.H. Wang, and G.H. Wu, Intermetallics 38, 139 (2013).
http://dx.doi.org/10.1016/j.intermet.2013.03.004
20.
20.X. F. Dai, G. D. Liu, L. J. Chen, J. L. Chen, and G .H Wu, Solid State Commun 140, 533 (2006).
http://dx.doi.org/10.1016/j.ssc.2006.09.030
21.
21.K. Özdoğan, E. Şaşıoğlu, and I. Galanakis, J. Appl. Phys. 113, 193903 (2013).
http://dx.doi.org/10.1063/1.4805063
22.
22.V. Alijani, J. Winterlik, G. H. Fecher, S. Shahab Naghavi, and C. Felser, Phys. Rev. B 83, 184428 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.184428
23.
23.V. Alijani, S. Ouardi, G. H Fecher, J. Winterlik, S Shahab Naghavi, X. Kozina, G. Stryganyuk, C. Felser, E. Ikenaga, Y. Yamashita, S. Ueda, and K. Kobayashi, Phys. Rev. B 84, 144413 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.224416
24.
24.Y.J. Zhang, Z.H. Liu, G.T. Li, X.Q. Ma, and G.D. Liu, J. Alloys Compd 616, 449 (2014).
http://dx.doi.org/10.1016/j.jallcom.2014.07.165
25.
25.G.Y. Gao, Lei Hu, K.L. Yao, Bo Luo, and Na Liu, J. Alloys Comp. 551, 539 (2013).
http://dx.doi.org/10.1016/j.jallcom.2012.11.077
26.
26.G.Z. Xu, E.K. Liu, Y. Du, G.J. Li, G.D. Liu, W.H. Wang, and G.H. Wu, Europhys. Lett 102, 17007 (2013).
http://dx.doi.org/10.1209/0295-5075/102/17007
27.
27.S. Berri, D. Maouche, M. Ibrir, and F. Zerarga, J. Magn. Magn. Mater 354, 65 (2014).
http://dx.doi.org/10.1016/j.jmmm.2013.10.044
28.
28.L. Xiong, L. Yi, and G.Y. Gao, J. Magn. Magn. Mater 360, 98 (2014).
http://dx.doi.org/10.1016/j.jmmm.2014.02.050
29.
29.M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoolous, Reviews of Modern Physics 64, 1065 (1992).
http://dx.doi.org/10.1103/RevModPhys.64.1045
30.
30.M.D. Segall, P.L.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, J. Phys.: Condens. Matter. 14, 2717 (2002).
http://dx.doi.org/10.1088/0953-8984/14/11/301
31.
31.D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7892
32.
32.J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
33.
33.U. Eberz, W. Seelentag, and H. U. Schuster, Z. Naturforsch. B 35, 1341 (1980).
http://dx.doi.org/10.1515/znb-1980-1103
34.
34.V. Alijani et al., Phys. Rev. B 84, 224416 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.224416
35.
35.X. M. Zhang, G. Z. Xu, Y. Du, E. K. Liu, Z. Y. Liu, G. D. Liu, W. H. Wang, and G. H. Wu, Europhys. Lett. 104, 27012 (2013).
http://dx.doi.org/10.1209/0295-5075/104/27012
36.
36.H.Y. Jia, X.F. Dai, X.M Zhang, L.Y. Wang, L. Chen, F. Wang, M. Jia, and G.D. Liu, J. Magn. Magn. Mater 343, 268 (2013).
http://dx.doi.org/10.1016/j.jmmm.2013.05.020
http://aip.metastore.ingenta.com/content/aip/journal/adva/5/5/10.1063/1.4921900
Loading
/content/aip/journal/adva/5/5/10.1063/1.4921900
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/5/5/10.1063/1.4921900
2015-05-27
2016-09-30

Abstract

Based on the first-principles calculations, quaternary Heusler alloys FeMnScZ (Z=Al, Ga, In) including its phase stability, band gap, the electronic structures and magnetic properties has been studied systematically. We have found that, in terms of the equilibrium lattice constants, FeMnScZ (Z=Al, Ga, In) are half-metallic ferrimagnets, which can sustain the high spin polarization under a very large amount of lattice distortions. The half-metallic band gap in FeMnScZ (Z=Al, Ga, In) alloys originates from the t-t splitting instead of the e-t splitting. The total magnetic moments are 3μB per unit cell for FeMnScZ (Z=Al, Ga, In) alloys following the Slater–Pauling rule with the total number of valence electrons minus 18 rather than 24. According to the study, the conclusion can be drawn that all of these compounds which have a negative formation energy are possible to be synthesized experimentally.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/5/5/1.4921900.html;jsessionid=K1PsN7LQm9PIJJWFE9zeKE6o.x-aip-live-06?itemId=/content/aip/journal/adva/5/5/10.1063/1.4921900&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/5/5/10.1063/1.4921900&pageURL=http://scitation.aip.org/content/aip/journal/adva/5/5/10.1063/1.4921900'
Right1,Right2,Right3,